我正在嘗試爲Keras(link)實現彈性反向傳播優化程序,但是具有挑戰性的部分是能夠根據每個參數的相應梯度是否爲正值來執行更新,負數或零。我編寫了下面的代碼作爲實現Rprop優化器的開始。但是,我似乎無法找到單獨訪問參數的方法。循環遍歷params
(如下面的代碼所示)在每次迭代時返回p, g, g_old, s, wChangeOld
,它們都是矩陣。Keras - 執行Rprop算法的問題
有沒有一種方法可以迭代各個參數並更新它們?如果我可以根據其漸變的符號對參數向量進行索引,它也可以工作。謝謝!
class Rprop(Optimizer):
def __init__(self, init_step=0.01, **kwargs):
super(Rprop, self).__init__(**kwargs)
self.init_step = K.variable(init_step, name='init_step')
self.iterations = K.variable(0., name='iterations')
self.posStep = 1.2
self.negStep = 0.5
self.minStep = 1e-6
self.maxStep = 50.
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
shapes = [K.get_variable_shape(p) for p in params]
stepList = [K.ones(shape)*self.init_step for shape in shapes]
wChangeOldList = [K.zeros(shape) for shape in shapes]
grads_old = [K.zeros(shape) for shape in shapes]
self.weights = stepList + grads_old + wChangeOldList
self.updates = []
for p, g, g_old, s, wChangeOld in zip(params, grads, grads_old,
stepList, wChangeOldList):
change = K.sign(g * g_old)
if change > 0:
s_new = K.minimum(s * self.posStep, self.maxStep)
wChange = s_new * K.sign(g)
g_new = g
elif change < 0:
s_new = K.maximum(s * self.posStep, self.maxStep)
wChange = - wChangeOld
g_new = 0
else:
s_new = s
wChange = s_new * K.sign(g)
g_new = p
self.updates.append(K.update(g_old, g_new))
self.updates.append(K.update(wChangeOld, wChange))
self.updates.append(K.update(s, s_new))
new_p = p - wChange
# Apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'init_step': float(K.get_value(self.init_step))}
base_config = super(Rprop, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
你不需要K.switch(K.equal(其他城市,0),......),而不是在這裏,如果/ elif的/別的嗎? – gkcn