0
我有一個腳本可以找到所有數字的總和,這些數字可以寫成他們數字的五次冪的總和。 (這個問題更詳細的描述on the Project Euler web site。)列表解析和循環之間的性能差異
我寫了兩種方式,但我不明白性能的差異。
第一種方式使用嵌套列表解析:
exp = 5
def min_combo(n):
return ''.join(sorted(list(str(n))))
def fifth_power(n, exp):
return sum([int(x) ** exp for x in list(n)])
print sum([fifth_power(j,exp) for j in set([min_combo(i) for i in range(101,1000000) ]) if int(j) > 10 and j == min_combo(fifth_power(j,exp)) ])
和型材這樣的:
$ python -m cProfile euler30.py
443839
3039223 function calls in 2.040 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1007801 1.086 0.000 1.721 0.000 euler30.py:10(min_combo)
7908 0.024 0.000 0.026 0.000 euler30.py:14(fifth_power)
1 0.279 0.279 2.040 2.040 euler30.py:6(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1007801 0.175 0.000 0.175 0.000 {method 'join' of 'str' objects}
1 0.013 0.013 0.013 0.013 {range}
1007801 0.461 0.000 0.461 0.000 {sorted}
7909 0.002 0.000 0.002 0.000 {sum}
第二種方法是更常用的for
循環:
exp = 5
ans= 0
def min_combo(n):
return ''.join(sorted(list(str(n))))
def fifth_power(n, exp):
return sum([int(x) ** exp for x in list(n)])
for j in set([ ''.join(sorted(list(str(i)))) for i in range(100, 1000000) ]):
if int(j) > 10:
if j == min_combo(fifth_power(j,exp)):
ans += fifth_power(j,exp)
print 'answer', ans
這裏是再次分析信息:
$ python -m cProfile euler30.py
answer 443839
2039325 function calls in 1.709 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
7908 0.024 0.000 0.026 0.000 euler30.py:13(fifth_power)
1 1.081 1.081 1.709 1.709 euler30.py:6(<module>)
7902 0.009 0.000 0.015 0.000 euler30.py:9(min_combo)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
1007802 0.147 0.000 0.147 0.000 {method 'join' of 'str' objects}
1 0.013 0.013 0.013 0.013 {range}
1007802 0.433 0.000 0.433 0.000 {sorted}
7908 0.002 0.000 0.002 0.000 {sum}
爲什麼列表理解實現調用min_combo()比for
循環實現多1,000,000次?