2017-01-06 45 views
1

全部,R閃亮 - >嵌套環無效環境錯誤

我正在處理以下代碼。從兩個文件(組合和混合)中獲取一些輸入,並執行一些排序/功能,然後將monte carlo-esque模擬運行爲線性程序。我認爲一切都設置正確,但我得到一些反應性錯誤,我不能確定。你能幫忙的話,我會很高興。

library(shiny) 
library(triangle) 
library(lpSolveAPI) 

# External CSV data 
start_mat<-matrix(rep("A",150),ncol=15,nrow=10) 
    family_vector<-c("A","B","C","C","D",rep("E",5)) 
    widgetweight_vect<-rep(5,10) 
    comp_weight_vector<-rep(4,10) 
    widgets_vector<-rep(100,10) 
    portfolio<-cbind.data.frame(start_mat,family_vector,widgetweight_vect,comp_weight_vector,widgets_vector) 

start_mat<-matrix(rep("A",150)ncol=15,rnow=10) 
    family_vector<-c("A","B","C","C","D",rep("E",5)) 
    widgetweight_vect<-rep(5,10) 
    comp_weight_vector<-rep(4,10) 
    widgets_vector<-rep(100,10) 
    portolfio<-c(start_mat,family_vector,widgetweight_vect,comp_weight_vectorwidgets_vector) 




blend<-matrix(rep(.20,25),nrow=5, ncol=5) 
colnames(blend)<-c("a","b","c","d","e") 
rownames(blend)<-c("a","b","c","d","e") 

ui <- shinyUI(fluidPage(
    br(), 
    actionButton("numb", "generate "), 
    column(3,numericInput("plan", label = h3("plan"), value = 50)), 
    column(3,numericInput("recweeks", label = h3("recweeks"), value = 50)), 
    column(3,numericInput("targetgen", label = h3("targetgen"), min= .1, max = .2, value = .17)), 
    column(3,numericInput("process_min", label = h3("process_min"), value = 5000)), 
    column(3,numericInput("process_target_trsp", label = h3("process_target_trsp"), min= .1, max = 1, value = .95)), 
    column(3,numericInput("process_max_trsp", label = h3("process_max_trsp"), min= .1, max = 1, value = 1)), 
    column(3,numericInput("planning_cycle", label = h3("planning_cycle"), min= 1, max = 7, value = 2)), 
    column(3,numericInput("rec_starting_inventory", label = h3("rec_starting_inventory"), min= 1, max = 10, value = 5)), 
    column(3,numericInput("process_min_campaign", label = h3("process_min_campaign"), min= 1, max = 2000, value = 50)), 
    column(3,numericInput("widgets_target", label = h3("widgets_target"), min= 5000, max = 7000, value = 5000)), 
    column(3,numericInput("widgets_variation_perc", label = h3("widgets_variation_perc"), min= .01, max = .2, value = .05)), 
    column(3,numericInput("process_recoup_max", label = h3("process_recoup_max"), min= .20, max = .50, value = .4)), 
    br(), 
    br(), 
    plotOutput("Plot") 
) 

) 

server <- shinyServer(function(input, output) { 
    plan<-reactive({input$plan}) 
    recweeks<-reactive({input$recweeks}) 
    targetgen<-reactive({input$targetgen}) 
    process_min<-reactive({input$process_min}) 
    process_target_trsp<-reactive({input$process_target_trsp}) 
    process_max_trsp<-reactive({input$process_max_trsp}) 
    planning_cycle<-reactive({input$planning_cycle}) 
    rec_starting_inventory<-reactive({input$rec_starting_inventory}) 
    process_min_campaign<-reactive({input$process_min_campaign}) 
    widgets_target<-reactive({input$widgets_target}) 
    widgets_variation_perc<-reactive({input$widgets_variation_perc}) 
    process_recoup_max<-reactive({input$process_recoup_max}) 


    model<- eventReactive(input$numb, { 

    totalsim<-as.numeric(plan()*recweeks()) 

    blend_length<-length(blend) 

    nrow<-function(x) dim(x)[1] 

    globalinventory<-vector(mode="numeric", length=(length(blend)-1)) 
    dims<-nrow(portfolio) 

    rec_stats<-matrix(c(0,0,0,0,0,0,0),ncol=7,nrow=1) 
    inventory_byBL<-matrix(c(rep(0,length(blend)-1)),ncol=(length(blend)-1),nrow=1) 

    #Set the random number seed 
    set.seed(100) 

    #Develop table of process performances 
    proc_location<-0.0 
    proc_myscale<-85.16507 
    proc_myshape<-13.35404 

    process_trs<-matrix((rweibull(totalsim, shape=proc_myshape, scale=proc_myscale)+proc_location)/100, nrow=totalsim, ncol=1) 
    process_trs<-replace(process_trs,process_trs>process_max_trsp(),process_max_trsp()) 
    process_perf<-process_trs/process_target_trsp() 
    process_index<-1 
    #write.csv(process_perf,file="MEZprocess_perf.csv") 

    #Develop tables of proced rec generations 
    location<-5.5646+4 
    myscale<-8.07516 
    myshape<-3.76987 

    recgen_perc<-matrix((rweibull(totalsim*dims, shape=myshape, scale=myscale)+location)/100, nrow=dims, ncol=totalsim) 

    #Develop the tables of plan Variations 
    trimin<-0.1 
    trimax<-2.2 
    trimode<-.95 
    tri<-rtriangle(totalsim*dims, a=trimin,b=trimax,c=trimode) 
    trimat<-matrix(tri,nrow=dims,ncol=totalsim) 

    #uniform distribution for some additional variation 
    unif_range<-as.numeric(widgets_variation_perc()) 
    do_var<-matrix(runif(totalsim,min=(1-unif_range),max=(1+unif_range)),nrow=totalsim,ncol=1) 

    #Create the rec generation vector 

    widgetweight<-portfolio[,17] 
    comp_weight<-portfolio[,18] 
    family<-as.factor(portfolio[,16]) 
    widgets<-portfolio[,19] 

    for(iii in 1:plan){ 
     local({ 
     widgets_base<-widgets*trimat[,iii] 
     total_widgets<-sum(widgets_base) 
     widgets_base<-widgets_base*widgets_target/total_widgets 

     for (ii in 1:recweeks){ ##Iterates through different rec generations 
      local({ 
      widgets_var<-widgets_base*do_var[process_index] 

      recgen_gr<-widgetweight*(recgen_perc[,ii])*widgets_var 
      parentBL_gr<-comp_weight*(1+targetgen)*widgets_base*process_perf[process_index] 
      newportfolio<-data.frame(family,recgen_gr,parentBL_gr) 

      #Now create the table of the aggregate values by family for the rec generated and the parent proc available for consumption 
      rectable<-aggregate(. ~ newportfolio$family, newportfolio, sum) 
      rectable 
      rectable<-rectable[,-2] 
      colnames(rectable)<-c("Family","recgen_gr","parentBL_gr") 
      rectable$parentBL_name<-substr(rectable$Family,1,5) 
      rectable 

      #Combine the rec generation information with the blend tables. This will be used to generated the constraints for the LP 
      #The two constraints that must be generated are the rec generation and the parent proc quantity 

      combinedtable<-merge(rectable,blend,all = TRUE) 
      combinedtable[is.na(combinedtable)] <- 0 
      combinedtable 
      parent.table<-data.frame(combinedtable$parentBL_name,combinedtable$parentBL_gr) 
      parent.table 
      colnames(parent.table)<-c("parentBL_name","parentBL_gr") 
      #rec generation constraint created for later use in the LP 
      generation.constraint<-combinedtable$recgen_gr 

      #Now parent proc constraint 
      blend_parent<-colnames(combinedtable) 
      blend_parent<-unlist(colnames(combinedtable[5:ncol(combinedtable)])) 
      blend_parent<-data.frame(blend_parent) 
      dim(blend_parent) 
      colnames(blend_parent)<-("parentBL_name") 
      parent_gen<-merge(blend_parent,parent.table) 
      parent_gen$gen<-as.factor(match(parent_gen$parentBL_name,blend_parent$parentBL_name)) 
      parent_gen<-parent_gen[order(parent_gen$gen),] 
      parent.constraint<-parent_gen[,2] 

      rnd <- function(x) trunc(x+sign(x)*0.5+.5) 

      #Create the production wheel based on the minimum run requirement for Z 
      parent.wheel<-parent.constraint 
      v<-length(parent.wheel) 
      parent.wheel<-ifelse(parent.wheel/process_min_campaign>1,1,rnd(process_min_campaign/parent.wheel)) 
      parent.wheel.adj<-ifelse(process_index%%parent.wheel==0,parent.wheel,0) 

      #Now multiple the results of the production wheel to the parent proc constraint to make the proces available to parent proced rec 
      parent.constraint_adj<-parent.constraint*parent.wheel.adj 

      ################################################################################################################################################################## 
      #Create LP with decision variables based on the number of constraints 
      n<-length(generation.constraint) 

      #Add a factor for "overage" dummy proc if there is rec that cannot be consumed 
      m<-length(parent.constraint_adj)+1 

      model<-make.lp(0,n*m) 

      rhs.gen<-generation.constraint+globalinventory+ifelse(process_index==1,generation.constraint*rec_starting_inventory,0) 

      rhs.proc<-parent.constraint_adj 

      blend_con<-cbind(1/blend[,2:(length(blend))],over=1000) 
      rownames(blend_con)<-blend[,1] 
      ####Row Constraints########################### 

      add.constraint(model,rep(1,m), "=", rhs.gen[1],indices=c(1:m)) 
      for (i in 1:(n-1)){ 
       start<-i*m+1 
       end<-i*m+m 
       add.constraint(model,rep(1,m), "=", rhs.gen[i+1],indices=c(start:end)) 
      } 

      for (i in 1:n) { 
       col<-c() 
       for (ii in seq(i,n*m,m)){ 
       col<-cbind(col,ii) 
       } 
       col 
       add.constraint(model,blend_con[,i],"<=",rhs.proc[i],indices=c(col)) 
      } 

      lp.control(model,sense='max') 

      objective<-1:(n*m) 
      remove<-seq(m,(n*m),m) 

      objective<-objective[-remove] 
      length(objective) 
      set.objfn(model,rep(1,length(objective)),indices=(objective)) 
      solve(model) 

      write.lp(model,filename="rec_linearprogram.lp") 

      get.objective(model) 
      length(get.variables(model)) 
      table<-get.variables(model) 
      tablemat<-t(matrix(table,ncol=n,nrow=m)) 

      sum(rhs.gen) 
      get.primal.solution(model, orig = FALSE) 
      #get.variables(model) 
      values<-get.variables(model) 
      values<-values[-objective] 
      sum(values)+get.objective(model) 
      #print(model) 


      #Actual consumption based on rules 
      tablemat_con<- ifelse(tablemat[,1:(m-1)]<process_min,0,tablemat[,1:(m-1)]) 
      real_consumption<-sum(tablemat_con)               ##Write this value to a table "rec consumed" 

      #Remainders that Cannot be consumed because of run rule 
      table_mat_remainder<-ifelse(tablemat[,1:(m-1)]<process_min,tablemat[,1:(m-1)],0) 
      table_mat_remainder<-rowSums(table_mat_remainder) 
      #table_mat_remainder                   ##Write this value to a table "Lost Opportunity" 
      missed_op<-sum(table_mat_remainder) 
      overage_next_day<-tablemat[,m] 
      globalinventory<-overage_next_day+ table_mat_remainder           ##Write this value to a table "New Inventory" 
      globalinventory_sum<-sum(globalinventory) 
      real_con_perc<-real_consumption/(sum(parent_gen[,2])*do_var[process_index])            ##achieved rec consumptions 
      max_con_perc<-(real_consumption+missed_op)/(sum(parent_gen[,2])*do_var[process_index])          ##Unconstrained rec consumption 
      actual_gen_perc<-sum(recgen_gr)/(sum(parent_gen[,2])*do_var[process_index]) 
      colnames(rec_stats)<-c("RealCon","GlobalInven","RealConPer","MaxPotent","ActrecGen","process Performance","tires per day") 
      rec_stats<<-rbind(rec_stats,c(real_consumption,globalinventory_sum,real_con_perc,max_con_perc,actual_gen_perc,process_perf[process_index],sum(widgets_var))) 
      inventory_byBL<<-rbind(inventory_byBL,c(globalinventory)) 
      process_index<-process_index+1 
      }) 
     } 


     #Plot 1 
     plot1<- matplot(rec_stats[,3:5]*100,col=c("springgreen4","grey50","red"),lwd=.5,lty=3,type = c("b"),pch=1,main="Evolution of rec Consumption/Generation",ylab="%", xlab="Days",ylim=c(0,30)) 

     list(plot1=plot1) 
     }) 
    } 
    }) 
    output$Plot<-renderPlot({model()$plot1}) 
}) 

shinyApp(ui = ui, server = server) 

Errors: 
Warning: Error in .getReactiveEnvironment()$currentContext: Operation not allowed without an active reactive context. (You tried to do something that can only be done from inside a reactive expression or observer.) 
Stack trace (innermost first): 
    48: .getReactiveEnvironment()$currentContext 
    47: .dependents$register 
    46: plan 
    45: server [#14] 
    4: <Anonymous> 
    3: do.call 
    2: print.shiny.appobj 
    1: print 
Error in .getReactiveEnvironment()$currentContext() : 
    Operation not allowed without an active reactive context. (You tried to do something that can only be done from inside a reactive expression or observer.) 

PS我知道我可以用plyr做很多這種編碼,有些應用vs循環,但這是我的。

+0

當您收到此錯誤?我拿了你的代碼,並能夠啓動應用程序,但當點擊「生成」時,我得到了一個不同的錯誤。 – krish

+0

關閉會話並重新運行腳本,並獲得了一條新的錯誤消息:警告:錯誤:: NA/NaN參數 堆棧跟蹤(最裏面的第一個): 123:eventReactiveHandler [#69] 103:model 102:renderPlot [#214] 92:<反應:plotObj> 81:plotObj 80:origRenderFunc 79:輸出$劇情 4: 3:do.call 2:print.shiny.appobj 1:打印 – MDEWITT

回答

1

還有其他的錯誤。有幾個錯誤和一些缺少()(如​​需要plan())的反應功能。

有幾件事情在這裏指出:

  • 一般來說,你不應該發展中閃亮這樣的大程序,你應該培養他們獨立,然後把它們放到一個包中的功能,最好用測試用例所以如果你改變了事情,你可以放心,他們仍然工作。這是專業人員如何做到的。
  • 如果確實需要調試,可以使用print語句找出它失敗的位置,然後使用調試器(可能通過嵌入browser()語句),然後停止並檢查那裏的變量。
  • 如果你給R一個函數名(就像你用​​所做的那樣),它需要一個數值,它可能會給你一個相當混亂的錯誤信息 - 就像你得到的那個。所以如果你看到令人困惑的錯誤信息,請看看這些缺失的括號,如()
  • R中有很多(太多)預定義函數,只是名字簡單。所以,如果你在使用它之前忘記定義或初始化一個變量,R會令人驚訝地經常替換你甚至不知道的函數。像dfsum。例如,輸入sum = sum+1,然後嘗試理解該消息。

我不得不註釋一個約束塊,並改變幾個一對一的不匹配,以使其工作。雖然這可能會很容易解決這些問題。

反正這裏是代碼:

library(shiny) 
library(triangle) 
library(lpSolveAPI) 

# External CSV data 
start_mat <- matrix(rep("A",150),ncol = 15,nrow = 10) 
family_vector <- c("A","B","C","C","D",rep("E",5)) 
widgetweight_vect <- rep(5,10) 
comp_weight_vector <- rep(4,10) 
widgets_vector <- rep(100,10) 
portfolio <- cbind.data.frame(start_mat,family_vector,widgetweight_vect,comp_weight_vector,widgets_vector) 

start_mat <- matrix(rep("A",150),ncol = 15,nrow = 10) 
family_vector <- c("A","B","C","C","D",rep("E",5)) 
widgetweight_vect <- rep(5,10) 
comp_weight_vector <- rep(4,10) 
widgets_vector <- rep(100,10) 
portolfio <- c(start_mat,family_vector,widgetweight_vect,comp_weight_vector,widgets_vector) 




blend <- matrix(rep(.20,25),nrow = 5,ncol = 5) 
colnames(blend) <- c("a","b","c","d","e") 
rownames(blend) <- c("a","b","c","d","e") 

ui <- shinyUI(fluidPage(
    br(), 
    actionButton("numb","generate "), 
    column(3,numericInput("plan",label = h3("plan"),value = 50)), 
    column(3,numericInput("recweeks",label = h3("recweeks"),value = 50)), 
    column(3,numericInput("targetgen",label = h3("targetgen"),min = .1,max = .2,value = .17)), 
    column(3,numericInput("process_min",label = h3("process_min"),value = 5000)), 
    column(3,numericInput("process_target_trsp",label = h3("process_target_trsp"),min = .1,max = 1,value = .95)), 
    column(3,numericInput("process_max_trsp",label = h3("process_max_trsp"),min = .1,max = 1,value = 1)), 
    column(3,numericInput("planning_cycle",label = h3("planning_cycle"),min = 1,max = 7,value = 2)), 
    column(3,numericInput("rec_starting_inventory",label = h3("rec_starting_inventory"),min = 1,max = 10,value = 5)), 
    column(3,numericInput("process_min_campaign",label = h3("process_min_campaign"),min = 1,max = 2000,value = 50)), 
    column(3,numericInput("widgets_target",label = h3("widgets_target"),min = 5000,max = 7000,value = 5000)), 
    column(3,numericInput("widgets_variation_perc",label = h3("widgets_variation_perc"),min = .01,max = .2,value = .05)), 
    column(3,numericInput("process_recoup_max",label = h3("process_recoup_max"),min = .20,max = .50,value = .4)), 
    br(), 
    br(), 
    plotOutput("Plot") 
) 

) 

server <- shinyServer(function(input,output) { 
    plan <- reactive({ input$plan }) 
    recweeks <- reactive({ input$recweeks }) 
    targetgen <- reactive({ input$targetgen }) 
    process_min <- reactive({ input$process_min }) 
    process_target_trsp <- reactive({ input$process_target_trsp }) 
    process_max_trsp <- reactive({ input$process_max_trsp }) 
    planning_cycle <- reactive({ input$planning_cycle }) 
    rec_starting_inventory <- reactive({ input$rec_starting_inventory }) 
    process_min_campaign <- reactive({ input$process_min_campaign }) 
    widgets_target <- reactive({ input$widgets_target }) 
    widgets_variation_perc <- reactive({ input$widgets_variation_perc }) 
    process_recoup_max <- reactive({ input$process_recoup_max }) 


    model <- eventReactive(input$numb,{ 

    totalsim <- as.numeric(plan() * recweeks()) 

    blend_length <- length(blend) 
    nrow <- function(x) dim(x)[1] 

    globalinventory <- vector(mode = "numeric",length = (length(blend))) # -1 ? 
    dims <- nrow(portfolio) 

    rec_stats <- matrix(c(0,0,0,0,0,0,0),ncol = 7,nrow = 1) 
    inventory_byBL <- matrix(c(rep(0,length(blend) - 0)),ncol = (length(blend) - 0),nrow = 1) # changed 1 to 0 twice 

    #Set the random number seed 
    set.seed(100) 

    #Develop table of process performances 
    proc_location <- 0.0 
    proc_myscale <- 85.16507 
    proc_myshape <- 13.35404 

    process_trs <- matrix((rweibull(totalsim,shape = proc_myshape,scale = proc_myscale) + proc_location)/100,nrow = totalsim,ncol = 1) 
    process_trs <- replace(process_trs,process_trs > process_max_trsp(),process_max_trsp()) 
    process_perf <- process_trs/process_target_trsp() 
    process_index <- 1 
    #write.csv(process_perf,file="MEZprocess_perf.csv") 

    #Develop tables of proced rec generations 
    location <- 5.5646 + 4 
    myscale <- 8.07516 
    myshape <- 3.76987 

    recgen_perc <- matrix((rweibull(totalsim * dims,shape = myshape,scale = myscale) + location)/100,nrow = dims,ncol = totalsim) 

    #Develop the tables of plan Variations 
    trimin <- 0.1 
    trimax <- 2.2 
    trimode <- .95 
    tri <- rtriangle(totalsim * dims,a = trimin,b = trimax,c = trimode) 
    trimat <- matrix(tri,nrow = dims,ncol = totalsim) 

    #uniform distribution for some additional variation 
    unif_range <- as.numeric(widgets_variation_perc()) 
    do_var <- matrix(runif(totalsim,min = (1 - unif_range),max = (1 + unif_range)),nrow = totalsim,ncol = 1) 

    #Create the rec generation vector 

    widgetweight <- portfolio[,17] 
    comp_weight <- portfolio[,18] 
    family <- as.factor(portfolio[,16]) 
    widgets <- portfolio[,19] 

    for (iii in 1:plan()) { 
     print(sprintf("iii:%d",iii)) 
     local({ 
     widgets_base <- widgets * trimat[,iii] 
     total_widgets <- sum(widgets_base) 
     widgets_base <- widgets_base * widgets_target()/total_widgets 

     for (ii in 1:recweeks()) { 
      ##Iterates through different rec generations 
      # print(sprintf(" ii:%d",ii)) 
      local({ 
      widgets_var <- widgets_base * do_var[process_index] 

      recgen_gr <- widgetweight * (recgen_perc[,ii]) * widgets_var 
      parentBL_gr <- comp_weight * (1 + targetgen()) * widgets_base * process_perf[process_index] 
      newportfolio <- data.frame(family,recgen_gr,parentBL_gr) 

      #Now create the table of the aggregate values by family for the rec generated and the parent proc available for consumption 
      rectable <- aggregate(. ~ newportfolio$family,newportfolio,sum) 
      rectable 
      rectable <- rectable[,-2] 
      colnames(rectable) <- c("Family","recgen_gr","parentBL_gr") 
      rectable$parentBL_name <- substr(rectable$Family,1,5) 
      rectable 

      #Combine the rec generation information with the blend tables. This will be used to generated the constraints for the LP 
      #The two constraints that must be generated are the rec generation and the parent proc quantity 

      combinedtable <- merge(rectable,blend,all = TRUE) 
      combinedtable[is.na(combinedtable)] <- 0 
      combinedtable 
      parent.table <- data.frame(combinedtable$parentBL_name,combinedtable$parentBL_gr) 
      parent.table 
      colnames(parent.table) <- c("parentBL_name","parentBL_gr") 
      #rec generation constraint created for later use in the LP 
      generation.constraint <- combinedtable$recgen_gr 

      #Now parent proc constraint 
      blend_parent <- colnames(combinedtable) 
      blend_parent <- unlist(colnames(combinedtable[5:ncol(combinedtable)])) 
      blend_parent <- data.frame(blend_parent) 
      dim(blend_parent) 
      colnames(blend_parent) <- ("parentBL_name") 
      parent_gen <- merge(blend_parent,parent.table) 
      parent_gen$gen <- as.factor(match(parent_gen$parentBL_name,blend_parent$parentBL_name)) 
      parent_gen <- parent_gen[order(parent_gen$gen),] 
      parent.constraint <- parent_gen[,2] 
      rnd <- function(x) trunc(x + sign(x) * 0.5 + .5) 

      #Create the production wheel based on the minimum run requirement for Z 
      parent.wheel <- parent.constraint 
      v <- length(parent.wheel) 
      parent.wheel <- ifelse(parent.wheel/process_min_campaign() > 1,1,rnd(process_min_campaign()/parent.wheel)) 
      parent.wheel.adj <- ifelse(process_index %% parent.wheel == 0,parent.wheel,0) 

      #Now multiple the results of the production wheel to the parent proc constraint to make the proces available to parent proced rec 
      parent.constraint_adj <- parent.constraint * parent.wheel.adj 

      ################################################################################################################################################################## 
      #Create LP with decision variables based on the number of constraints 
      n <- length(generation.constraint) 

      #Add a factor for "overage" dummy proc if there is rec that cannot be consumed 
      m <- length(parent.constraint_adj) + 1 
      model <- make.lp(0,n * m) 

      rhs.gen <- generation.constraint + globalinventory + ifelse(process_index == 1,generation.constraint * rec_starting_inventory(),0) 
      rhs.proc <- parent.constraint_adj 

      blend_con <- cbind(1/blend[,2:(dim(blend)[2])],over = 1000) 
      rownames(blend_con) <- blend[,1] 
      ####Row Constraints########################### 
      add.constraint(model,rep(1,m),"=",rhs.gen[1],indices = c(1:m)) 
      for (i in 1:(n - 1)) { 
       start <- i * m + 1 
       end <- i * m + m 
       add.constraint(model,rep(1,m),"=",rhs.gen[i + 1],indices = c(start:end)) 
      } 


      #for (i in 1:n) { 
       #col <- c() 
       #for (ii in seq(i,n * m,m)) { 
       #col <- cbind(col,ii) 
       #} 
       #col 
       #add.constraint(model,blend_con[,i],"<=",rhs.proc[i],indices = c(col)) 
      #} 

      lp.control(model,sense = 'max') 

      objective <- 1:(n * m) 
      remove <- seq(m,(n * m),m) 

      objective <- objective[-remove] 
      length(objective) 
      set.objfn(model,rep(1,length(objective)),indices = (objective)) 
      solve(model) 

      write.lp(model,filename = "rec_linearprogram.lp") 

      get.objective(model) 
      length(get.variables(model)) 
      table <- get.variables(model) 
      tablemat <- t(matrix(table,ncol = n,nrow = m)) 
      sum(rhs.gen) 
      get.primal.solution(model,orig = FALSE) 
      #get.variables(model) 
      values <- get.variables(model) 
      values <- values[-objective] 
      sum(values) + get.objective(model) 
      #print(model) 



      #Actual consumption based on rules 
      tablemat_con <- ifelse(tablemat[,1:(m - 1)] < process_min(),0,tablemat[,1:(m - 1)]) 
      real_consumption <- sum(tablemat_con) ##Write this value to a table "rec consumed" 

      #Remainders that Cannot be consumed because of run rule 
      table_mat_remainder <- ifelse(tablemat[,1:(m - 1)] < process_min(),tablemat[,1:(m - 1)],0) 
      #table_mat_remainder <- rowSums(table_mat_remainder) 
      table_mat_remainder <- sum(table_mat_remainder) 
      #table_mat_remainder                   ##Write this value to a table "Lost Opportunity" 
      missed_op <- sum(table_mat_remainder) 
      overage_next_day <- tablemat[,m] 
      globalinventory <- overage_next_day + table_mat_remainder ##Write this value to a table "New Inventory" 
      globalinventory_sum <- sum(globalinventory) 
      real_con_perc <- real_consumption/(sum(parent_gen[,2]) * do_var[process_index]) ##achieved rec consumptions 
      max_con_perc <- (real_consumption + missed_op)/(sum(parent_gen[,2]) * do_var[process_index]) ##Unconstrained rec consumption 
      actual_gen_perc <- sum(recgen_gr)/(sum(parent_gen[,2]) * do_var[process_index]) 
      colnames(rec_stats) <- c("RealCon","GlobalInven","RealConPer","MaxPotent","ActrecGen","process Performance","tires per day") 
      rec_stats <<- rbind(rec_stats,c(real_consumption,globalinventory_sum,real_con_perc,max_con_perc,actual_gen_perc,process_perf[process_index],sum(widgets_var))) 
      inventory_byBL <<- rbind(inventory_byBL,c(globalinventory)) 
      process_index <- process_index + 1 
      }) 
     } 
     #Plot 1 
     plot1 <- matplot(rec_stats[,c(1,2,6,7)] * 100,col = c("springgreen4","grey50","red"),lwd = .5,lty = 3,type = c("b"),pch = 1,main = "Evolution of rec Consumption/Generation",ylab = "%",xlab = "Days",ylim = c(0,30)) 

     list(plot1 = plot1) 
     }) 
    } 
    }) 
    output$Plot <- renderPlot({ model()$plot1 }) 
}) 

shinyApp(ui = ui,server = server) 

而這正是它輸出:

enter image description here