好的。我在Matlab中有一些背景,現在我正在切換到Python。 我有64位Linux Pythnon 2.6.5下此位的代碼,通過目錄滾動,找到名爲「GeneralData.dat」的文件,從中獲取一些數據,並將其縫合成一個新的數據集:使用os.path.walk時賦值前賦值的問題
import pylab as p
import os, re
import linecache as ln
def LoadGenomeMeanSize(arg, dirname, files):
for file in files:
filepath = os.path.join(dirname, file)
if filepath == os.path.join(dirname,'GeneralData.dat'):
data = p.genfromtxt(filepath)
if data[-1,4] != 0.0: # checking if data set is OK
data_chopped = data[1000:-1,:] # removing some of data
Grand_mean = data_chopped[:,2].mean()
Grand_STD = p.sqrt((sum(data_chopped[:,4]*data_chopped[:,3]**2) + sum((data_chopped[:,2]-Grand_mean)**2))/sum(data_chopped[:,4]))
else:
break
if filepath == os.path.join(dirname,'ModelParams.dat'):
l = re.split(" ", ln.getline(filepath, 6))
turb_param = float(l[2])
arg.append((Grand_mean, Grand_STD, turb_param))
GrandMeansData = []
os.path.walk(os.getcwd(), LoadGenomeMeanSize, GrandMeansData)
GrandMeansData = sorted(GrandMeansData, key=lambda data_sort: data_sort[2])
TheMeans = p.zeros((len(GrandMeansData), 3))
i = 0
for item in GrandMeansData:
TheMeans[i,0] = item[0]
TheMeans[i,1] = item[1]
TheMeans[i,2] = item[2]
i += 1
print TheMeans # just checking...
# later do some computation on TheMeans in NumPy
它拋出我這個(儘管我發誓這是工作一個月自負):
Traceback (most recent call last):
File "/home/User/01_PyScripts/TESTtest.py", line 29, in <module>
os.path.walk(os.getcwd(), LoadGenomeMeanSize, GrandMeansData)
File "/usr/lib/python2.6/posixpath.py", line 233, in walk
walk(name, func, arg)
File "/usr/lib/python2.6/posixpath.py", line 225, in walk
func(arg, top, names)
File "/home/User/01_PyScripts/TESTtest.py", line 26, in LoadGenomeMeanSize
arg.append((Grand_mean, Grand_STD, turb_param))
UnboundLocalError: local variable 'Grand_mean' referenced before assignment
好吧......讓我去,做一些閱讀,並與這個全局變量想出了:
import pylab as p
import os, re
import linecache as ln
Grand_mean = p.nan
Grand_STD = p.nan
def LoadGenomeMeanSize(arg, dirname, files):
for file in files:
global Grand_mean
global Grand_STD
filepath = os.path.join(dirname, file)
if filepath == os.path.join(dirname,'GeneralData.dat'):
data = p.genfromtxt(filepath)
if data[-1,4] != 0.0: # checking if data set is OK
data_chopped = data[1000:-1,:] # removing some of data
Grand_mean = data_chopped[:,2].mean()
Grand_STD = p.sqrt((sum(data_chopped[:,4]*data_chopped[:,3]**2) + sum((data_chopped[:,2]-Grand_mean)**2))/sum(data_chopped[:,4]))
else:
break
if filepath == os.path.join(dirname,'ModelParams.dat'):
l = re.split(" ", ln.getline(filepath, 6))
turb_param = float(l[2])
arg.append((Grand_mean, Grand_STD, turb_param))
GrandMeansData = []
os.path.walk(os.getcwd(), LoadGenomeMeanSize, GrandMeansData)
GrandMeansData = sorted(GrandMeansData, key=lambda data_sort: data_sort[2])
TheMeans = p.zeros((len(GrandMeansData), 3))
i = 0
for item in GrandMeansData:
TheMeans[i,0] = item[0]
TheMeans[i,1] = item[1]
TheMeans[i,2] = item[2]
i += 1
print TheMeans # just checking...
# later do some computation on TheMeans in NumPy
它不會給錯誤按摩。甚至給數據文件...但數據是血腥的錯誤!我通過運行命令手動檢查了其中的一些:
import pylab as p
data = p.genfromtxt(filepath)
data_chopped = data[1000:-1,:]
Grand_mean = data_chopped[:,2].mean()
Grand_STD = p.sqrt((sum(data_chopped[:,4]*data_chopped[:,3]**2) \
+ sum((data_chopped[:,2]-Grand_mean)**2))/sum(data_chopped[:,4]))
對選定的文件。他們是不同的:-(
1)任何人都可以解釋我有什麼不對?
2)有誰知道解決方案嗎?
我會幫忙:-)
乾杯感謝, PTR
盆景!謝謝馬特! – PTR 2010-11-15 17:29:30
請考慮通過點擊旁邊的複選框給我的答案:) – 2010-11-16 16:05:48