我正在使用單節點Kafka代理(0.10.2)和單節點zookeeper代理(3.4.9)。我有一個消費者服務器(單核和1.5 GB RAM)。每當我運行一個進程有5個或更多的線程我的消費者的線程拋出這些異常Kafka消費者拋出java.lang.OutOfMemoryError:直接緩衝區內存
- 異常1
java.lang.OutOfMemoryError: Java heap space at java.nio.HeapByteBuffer.(HeapByteBuffer.java:57) at java.nio.ByteBuffer.allocate(ByteBuffer.java:335) at org.apache.kafka.common.network.NetworkReceive.readFromReadableChannel(NetworkReceive.java:93) at org.apache.kafka.common.network.NetworkReceive.readFrom(NetworkReceive.java:71) at org.apache.kafka.common.network.KafkaChannel.receive(KafkaChannel.java:169) at org.apache.kafka.common.network.KafkaChannel.read(KafkaChannel.java:150) at org.apache.kafka.common.network.Selector.pollSelectionKeys(Selector.java:355) at org.apache.kafka.common.network.Selector.poll(Selector.java:303) at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:349) at org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:226) at org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.pollNoWakeup(ConsumerNetworkClient.java:263) at org.apache.kafka.clients.consumer.internals.AbstractCoordinator$HeartbeatThread.run(AbstractCoordinator.java:887)
- 異常2 後被殺
Uncaught exception in kafka-coordinator-heartbeat-thread | topic1: java.lang.OutOfMemoryError: Direct buffer memory at java.nio.Bits.reserveMemory(Bits.java:693) at java.nio.DirectByteBuffer.(DirectByteBuffer.java:123) at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:311) at sun.nio.ch.Util.getTemporaryDirectBuffer(Util.java:241) at sun.nio.ch.IOUtil.read(IOUtil.java:195) at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380) at org.apache.kafka.common.network.PlaintextTransportLayer.read(PlaintextTransportLayer.java:110) at org.apache.kafka.common.network.NetworkReceive.readFromReadableChannel(NetworkReceive.java:97) at org.apache.kafka.common.network.NetworkReceive.readFrom(NetworkReceive.java:71) at org.apache.kafka.common.network.KafkaChannel.receive(KafkaChannel.java:169) at org.apache.kafka.common.network.KafkaChannel.read(KafkaChannel.java:150) at org.apache.kafka.common.network.Selector.pollSelectionKeys(Selector.java:355) at org.apache.kafka.common.network.Selector.poll(Selector.java:303) at org.apache.kafka.clients.NetworkClient.poll(NetworkClient.java:349) at org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.poll(ConsumerNetworkClient.java:226) at org.apache.kafka.clients.consumer.internals.ConsumerNetworkClient.pollNoWakeup(ConsumerNetworkClient.java:263) at org.apache.kafka.clients.consumer.internals.AbstractCoordinator$HeartbeatThread.run(AbstractCoordinator.java:887)
我GOOGLE了它和使用下述JVM參數,但仍時有發生相同的異常紅色
-XX:MaxDirectMemorySize=768m
-Xms512m
如何解決此問題?是否需要其他javm參數調整?
我卡夫卡的消費準則是
import com.mongodb.DBObject
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.clients.consumer.ConsumerRecords
import org.apache.kafka.clients.consumer.KafkaConsumer
import org.apache.kafka.clients.consumer.OffsetAndMetadata
import org.apache.kafka.clients.consumer.OffsetCommitCallback
import org.apache.kafka.common.TopicPartition
import org.apache.kafka.common.errors.InterruptException
import org.apache.kafka.common.errors.WakeupException
import org.slf4j.Logger
import org.slf4j.LoggerFactory
import java.util.regex.Pattern
class KafkaPollingConsumer implements Runnable {
private static final Logger logger = LoggerFactory.getLogger(KafkaPollingConsumer.class)
private static final String TAG = "[KafkaPollingConsumer]"
private final KafkaConsumer<String, byte []> kafkaConsumer
private Map<TopicPartition,OffsetAndMetadata> currentOffsetsMap = new HashMap<>()
List topicNameList
Map kafkaTopicConfigMap = new HashMap<String,Object>()
Map kafkaTopicMessageListMap = new HashMap<String,List>()
Boolean isRebalancingTriggered = false
private final Long REBALANCING_SLEEP_TIME = 1000
public KafkaPollingConsumer(String serverType, String groupName, String topicNameRegex, Integer batchSize, Integer maxPollTime, Integer requestTime){
logger.debug("{} [Constructor] [Enter] Thread Name {} serverType group Name TopicNameRegex",TAG,Thread.currentThread().getName(),serverType,groupName,topicNameRegex)
logger.debug("Populating Property for kafak consumer")
logger.debug("BatchSize {}",batchSize)
Properties kafkaConsumerProperties = new Properties()
kafkaConsumerProperties.put("group.id", groupName)
kafkaConsumerProperties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
kafkaConsumerProperties.put("value.deserializer", "com.custom.kafkaconsumerv2.deserializer.CustomObjectDeserializer")
switch(serverType){
case KafkaTopicConfigEntity.KAFKA_NODE_TYPE_ENUM.Priority.toString() :
kafkaConsumerProperties.put("bootstrap.servers",ConfigLoader.conf.kafkaServer.priority.kafkaNode)
kafkaConsumerProperties.put("enable.auto.commit",ConfigLoader.conf.kafkaServer.priority.consumer.enable.auto.commit)
kafkaConsumerProperties.put("auto.offset.reset",ConfigLoader.conf.kafkaServer.priority.consumer.auto.offset.reset)
break
case KafkaTopicConfigEntity.KAFKA_NODE_TYPE_ENUM.Bulk.toString() :
kafkaConsumerProperties.put("bootstrap.servers",ConfigLoader.conf.kafkaServer.bulk.kafkaNode)
kafkaConsumerProperties.put("enable.auto.commit",ConfigLoader.conf.kafkaServer.bulk.consumer.enable.auto.commit)
kafkaConsumerProperties.put("auto.offset.reset",ConfigLoader.conf.kafkaServer.bulk.consumer.auto.offset.reset)
kafkaConsumerProperties.put("max.poll.records",1)
kafkaConsumerProperties.put("max.poll.interval.ms",600000)
kafkaConsumerProperties.put("request.timeout.ms",600005)
break
default :
throw "Invalid server type"
break
}
logger.debug("{} [Constructor] KafkaConsumer Property Populated {}",properties.toString())
kafkaConsumer = new KafkaConsumer<String, byte []>(kafkaConsumerProperties)
topicNameList = topicNameRegex.split(Pattern.quote('|'))
logger.debug("{} [Constructor] Kafkatopic List {}",topicNameList.toString())
logger.debug("{} [Constructor] Exit",TAG)
}
private class HandleRebalance implements ConsumerRebalanceListener {
public void onPartitionsAssigned(Collection<TopicPartition> partitions) {
logger.error('{} In onPartitionAssigned setting isRebalancingTriggered to false',TAG)
isRebalancingTriggered = false
}
public void onPartitionsRevoked(Collection<TopicPartition> partitions) {
logger.error("{} In onPartitionsRevoked setting osRebalancingTriggered to true",TAG)
isRebalancingTriggered = true
publishAllKafkaTopicBatchMessages()
commitOffset()
}
}
private class AsyncCommitCallBack implements OffsetCommitCallback{
@Override
void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {
}
}
@Override
void run() {
logger.debug("{} Starting Thread ThreadName {}",TAG,Thread.currentThread().getName())
populateKafkaConfigMap()
initializeKafkaTopicMessageListMap()
String topicName
String consumerClassName
String consumerMethodName
Boolean isBatchJob
Integer batchSize = 0
final Thread mainThread = Thread.currentThread()
Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() {
logger.error("{},gracefully shutdowning thread {}",TAG,mainThread.getName())
kafkaConsumer.wakeup()
try {
mainThread.join()
} catch (InterruptedException exception) {
logger.error("{} Error : {}",TAG,exception.getStackTrace().join("\n"))
}
}
})
kafkaConsumer.subscribe(topicNameList , new HandleRebalance())
try{
while(true){
logger.debug("{} Starting Consumer with polling time in ms 100",TAG)
ConsumerRecords kafkaRecords
if(isRebalancingTriggered == false) {
kafkaRecords = kafkaConsumer.poll(100)
}
else{
logger.error("{} in rebalancing going to sleep",TAG)
Thread.sleep(REBALANCING_SLEEP_TIME)
continue
}
for(ConsumerRecord record: kafkaRecords){
if(isRebalancingTriggered == true){
break
}
currentOffsetsMap.put(new TopicPartition(record.topic(), record.partition()),new OffsetAndMetadata(record.offset() +1))
topicName = record.topic()
DBObject kafkaTopicConfigDBObject = kafkaTopicConfigMap.get(topicName)
consumerClassName = kafkaTopicConfigDBObject.get(KafkaTopicConfigEntity.CLASS_NAME_KEY)
consumerMethodName = kafkaTopicConfigDBObject.get(KafkaTopicConfigEntity.METHOD_NAME_KEY)
isBatchJob = kafkaTopicConfigDBObject.get(KafkaTopicConfigEntity.IS_BATCH_JOB_KEY)
logger.debug("Details about Message")
logger.debug("Thread {}",mainThread.getName())
logger.debug("Topic {}",topicName)
logger.debug("Partition {}",record.partition().toString())
logger.debug("Offset {}",record.offset().toString())
logger.debug("clasName {}",consumerClassName)
logger.debug("methodName {}",consumerMethodName)
logger.debug("isBatchJob {}",isBatchJob.toString())
Object message = record.value()
logger.debug("message {}",message.toString())
if(isBatchJob == true){
prepareMessagesBatch(topicName,message)
//batchSize = Integer.parseInt(kafkaTopicConfigDBObject.get(KafkaTopicConfigEntity.BATCH_SIZE_KEY).toString())
//logger.debug("batchSize {}",batchSize.toString())
}
else{
publishMessageToNonBatchConsumer(consumerClassName,consumerMethodName,message)
}
//publishMessageToConsumers(consumerClassName,consumerMethodName,isBatchJob,batchSize,message,topicName)
//try {
// kafkaConsumer.commitAsync(currentOffsetsMap,new AsyncCommitCallBack())
logger.debug("{} Commiting Messages to Kafka",TAG)
//}
/*catch(Exception exception){
kafkaConsumer.commitSync(currentOffsetsMap)
currentOffsetsMap.clear()
logger.error("{} Error while commiting async so commiting in sync {}",TAG,exception.getStackTrace().join("\n"))
}*/
}
commitOffset()
publishAllKafkaTopicBatchMessages()
}
}
catch(InterruptException exception){
logger.error("{} In InterruptException",TAG)
logger.error("{} In Exception exception message {}",TAG,exception.getMessage())
logger.error("{} Exception {}",TAG,exception.getStackTrace().join("\n"))
}
catch (WakeupException exception) {
logger.error("{} In WakeUp Exception",TAG)
logger.error("{} In Exception exception message {}",TAG,exception.getMessage())
logger.error("{} Exception {}",TAG,exception.getStackTrace().join("\n"))
}
catch(Exception exception){
exception.getMessage()
logger.error("{} In Exception",TAG)
logger.error("{} In Exception exception message {}",TAG,exception.getMessage())
logger.error("{} Exception {}",TAG,exception.getStackTrace().join("\n"))
}
finally {
logger.error("{} In finally commiting remaining offset ",TAG)
publishAllKafkaTopicBatchMessages()
//kafkaConsumer.commitSync(currentOffsetsMap)
kafkaConsumer.close()
logger.error("{} Exiting Consumer",TAG)
}
}
private void commitOffset(){
logger.debug("{} [commitOffset] Enter")
logger.debug("{} currentOffsetMap {}",currentOffsetsMap.toString())
if(currentOffsetsMap.size() > 0) {
kafkaConsumer.commitSync(currentOffsetsMap)
currentOffsetsMap.clear()
}
logger.debug("{} [commitOffset] Exit")
}
private void publishMessageToConsumers(String consumerClassName,String consumerMethodName,Boolean isBatchJob,Integer batchSize,Object message, String topicName){
logger.debug("{} [publishMessageToConsumer] Enter",TAG)
if(isBatchJob == true){
publishMessageToBatchConsumer(consumerClassName, consumerMethodName,batchSize, message, topicName)
}
else{
publishMessageToNonBatchConsumer(consumerClassName, consumerMethodName, message)
}
logger.debug("{} [publishMessageToConsumer] Exit",TAG)
}
private void publishMessageToNonBatchConsumer(String consumerClassName, String consumerMethodName, message){
logger.debug("{} [publishMessageToNonBatchConsumer] Enter",TAG)
executeConsumerMethod(consumerClassName,consumerMethodName,message)
logger.debug("{} [publishMessageToNonBatchConsumer] Exit",TAG)
}
private void publishMessageToBatchConsumer(String consumerClassName, String consumerMethodName, Integer batchSize, Object message, String topicName){
logger.debug("{} [publishMessageToBatchConsumer] Enter",TAG)
List consumerMessageList = kafkaTopicMessageListMap.get(topicName)
consumerMessageList.add(message)
if(consumerMessageList.size() == batchSize){
logger.debug("{} [publishMessageToBatchConsumer] Pushing Messages In Batches",TAG)
executeConsumerMethod(consumerClassName, consumerMethodName, consumerMessageList)
consumerMessageList.clear()
}
kafkaTopicMessageListMap.put(topicName,consumerMessageList)
logger.debug("{} [publishMessageToBatchConsumer] Exit",TAG)
}
private void populateKafkaConfigMap(){
logger.debug("{} [populateKafkaConfigMap] Enter",TAG)
KafkaTopicConfigDBService kafkaTopicConfigDBService = KafkaTopicConfigDBService.getInstance()
topicNameList.each { topicName ->
DBObject kafkaTopicDBObject = kafkaTopicConfigDBService.findByTopicName(topicName)
kafkaTopicConfigMap.put(topicName,kafkaTopicDBObject)
}
logger.debug("{} [populateKafkaConfigMap] kafkaConfigMap {}",TAG,kafkaTopicConfigMap.toString())
logger.debug("{} [populateKafkaConfigMap] Exit",TAG)
}
private void initializeKafkaTopicMessageListMap(){
logger.debug("{} [initializeKafkaTopicMessageListMap] Enter",TAG)
topicNameList.each { topicName ->
kafkaTopicMessageListMap.put(topicName,[])
}
logger.debug("{} [populateKafkaConfigMap] kafkaTopicMessageListMap {}",TAG,kafkaTopicMessageListMap.toString())
logger.debug("{} [initializeKafkaTopicMessageListMap] Exit",TAG)
}
private void executeConsumerMethod(String className, String methodName, def messages){
try{
logger.debug("{} [executeConsumerMethod] Enter",TAG)
logger.debug("{} [executeConsumerMethod] className {} methodName {} messages {}",TAG,className,methodName,messages.toString())
Class.forName(className)."$methodName"(messages)
} catch (Exception exception){
logger.error("{} [{}] Error while executing method : {} of class: {} with params : {} - {}", TAG, Thread.currentThread().getName(), methodName,
className, messages.toString(), exception.getStackTrace().join("\n"))
}
logger.debug("{} [executeConsumerMethod] Exit",TAG)
}
private void publishAllKafkaTopicBatchMessages(){
logger.debug("{} [publishAllKafkaTopicBatchMessages] Enter",TAG)
String consumerClassName = null
String consumerMethodName = null
kafkaTopicMessageListMap.each { topicName, messageList ->
if (messageList != null && messageList.size() > 0) {
DBObject kafkaTopicDBObject = kafkaTopicConfigMap.get(topicName)
consumerClassName = kafkaTopicDBObject.get(KafkaTopicConfigEntity.CLASS_NAME_KEY)
consumerMethodName = kafkaTopicDBObject.get(KafkaTopicConfigEntity.METHOD_NAME_KEY)
logger.debug("{} Pushing message in topic {} className {} methodName {} ", TAG, topicName, consumerClassName, consumerMethodName)
if (messageList != null && messageList.size() > 0) {
executeConsumerMethod(consumerClassName, consumerMethodName, messageList)
messageList.clear()
kafkaTopicMessageListMap.put(topicName, messageList)
}
}
}
logger.debug("{} [publishAllKafkaTopicBatchMessages] Exit",TAG)
}
private void prepareMessagesBatch(String topicName,Object message){
logger.debug("{} [prepareMessagesBatch] Enter",TAG)
logger.debug("{} [prepareMessagesBatch] preparing batch for topic {}",TAG,topicName)
logger.debug("{} [prepareMessagesBatch] preparting batch for message {}",TAG,message.toString())
List consumerMessageList = kafkaTopicMessageListMap.get(topicName)
consumerMessageList.add(message)
kafkaTopicMessageListMap.put(topicName,consumerMessageList)
}
}
你可以看到你有多少數據有待/未使用?有了kafka,你需要能夠緩衝存儲器中的所有數據。你生產什麼信息速率?如果你以低得多的速度生產會發生什麼。 –