2017-08-03 92 views
1

我想在不使用MultiRNNCell的情況下製作多層RNN,因爲我想獨立更新每個圖層。所以我沒有使用tf.dynamic_rnn。Tensorflow RNN variable_scope error

with tf.variable_scope("cell"): 
    with tf.variable_scope("cell_1", reuse=True): 
    cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden) 
    states_1 = cell_1.zero_state(batch_size, tf.float32) 

    with tf.variable_scope("cell_2", reuse=True): 
    cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden) 
    states_2 = cell_2.zero_state(batch_size, tf.float32) 

    with tf.variable_scope("cell_3", reuse=True): 
    cell_3 = tf.contrib.rnn.BasicLSTMCell(n_hidden) 
    states_3 = cell_3.zero_state(batch_size, tf.float32) 

outputs_1=[] 
outputs_2=[] 
outputs_3=[] 

with tf.variable_scope("architecture"): 
    for i in range(n_step): 
    output_1, states_1 = cell_1(X[:, i], states_1) 
    output_2, states_2 = cell_2(output_1, states_2) 
    output_3, states_3 = cell_3(output_2, states_3) 
    outputs_3.append(output_3) 

然後我得到這樣的錯誤。

ValueError: Variable architecture/basic_lstm_cell/kernel already exists, disallowed. Did you mean to set reuse=True in VarScope?

因此,似乎不可能在沒有MultiRNNCell的情況下聲明張量流中的多個單元。我該如何解決這個問題?

回答

0

我解決了這個問題並分享了答案。

cell = tf.contrib.rnn.BasicLSTMCell(n_hidden) 
cell2 = tf.contrib.rnn.BasicLSTMCell(n_hidden) 
cell3 = tf.contrib.rnn.BasicLSTMCell(n_hidden) 

states = cell.zero_state(batch_size, tf.float32) 
states2 = cell2.zero_state(batch_size, tf.float32) 
states3 = cell3.zero_state(batch_size, tf.float32) 

outputs=[] 
for i in range(n_step): 
    with tf.variable_scope("cell1"): 
    output, states = cell(X[:, i], states) 
    with tf.variable_scope("cell2"): 
    output2, states2 = cell2(output, states2) 
    with tf.variable_scope("cell3"): 
    output3, states3 = cell3(output2, states3) 

    outputs.append(output3)