2017-10-18 56 views
1

我正在使用tensorflow的ctc_costctc_greedy_decoder。當我訓練最小化模型ctc_cost的成本時,但是當我解碼它總是沒有投入任何東西。這有可能發生嗎?我的代碼如下。tensorflow - CTC丟失減少,但解碼器輸出爲空

我想知道我是否正確預處理數據。我預測在給定fbank特徵幀上的手機序列號。有48部電話(48班),每個框架有69個功能。我將num_classes設置爲49,因此邏輯將具有尺寸(max_time_steps, num_samples, 49)。而對於我的稀疏張量,我的值範圍從0到47(48保留空白)。我從未在數據中添加空白,我認爲我不應該這樣做? (我應該做那樣的事情嗎?)

當訓練時,每次迭代和時期後成本都會下降,但編輯距離永遠不會減少。事實上,它保持在1,因爲解碼器幾乎總是預測和排空序列。有什麼我做錯了嗎?

graph = tf.Graph() 
with graph.as_default(): 

    inputs = tf.placeholder(tf.float32, [None, None, num_features]) 
    targets = tf.sparse_placeholder(tf.int32) 
    seq_len = tf.placeholder(tf.int32, [None]) 
    seq_len_t = tf.placeholder(tf.int32, [None]) 
    cell = tf.contrib.rnn.LSTMCell(num_hidden) 
    stack = tf.contrib.rnn.MultiRNNCell([cell] * num_layers) 
    outputs, _ = tf.nn.dynamic_rnn(stack, inputs, seq_len, dtype=tf.float32) 
    outputs, _ = tf.nn.dynamic_rnn(stack, inputs, seq_len, dtype=tf.float32) 

    input_shape = tf.shape(inputs) 
    outputs = tf.reshape(outputs, [-1, num_hidden]) 
    W = tf.Variable(tf.truncated_normal([num_hidden, 
            num_classes], 
            stddev=0.1)) 

    b = tf.Variable(tf.constant(0., shape=[num_classes])) 


    logits = tf.matmul(outputs, W) + b 

    logits = tf.reshape(logits, [input_shape[0], -1, num_classes]) 

    logits = tf.transpose(logits, (1, 0, 2)) 

    loss = tf.nn.ctc_loss(targets, logits, seq_len) 
    cost = tf.reduce_mean(loss) 

    decoded, log_probabilities = tf.nn.ctc_greedy_decoder(logits, seq_len, merge_repeated=True) 
    optimizer = tf.train.MomentumOptimizer(initial_learning_rate, 0.1).minimize(cost) 
    err = tf.reduce_mean(tf.edit_distance(tf.cast(decoded[0],tf.int32), targets)) 
    saver = tf.train.Saver()  

with tf.Session(graph=graph) as session: 

    X, Y, ids, seq_length, label_to_int, int_to_label = get_data('train') 

    session.run(tf.global_variables_initializer()) 

    print(seq_length) 

    num_batches = len(X)//batch_size + 1 



    for epoch in range(epochs): 
     print ('epoch'+str(epoch)) 
     for batch in range(num_batches): 
      input_X, target_input, seq_length_X = get_next_batch(batch,X, Y ,seq_length,batch_size) 
      feed = {inputs: input_X , 
      targets: target_input, 
      seq_len: seq_length_X} 

      print ('epoch'+str(epoch)) 
      _, print_cost, print_er = session.run([optimizer, cost, err], feed_dict = feed) 
      print('epoch '+ str(epoch)+' batch '+str(batch)+ ' cost: '+str(print_cost)+' er: '+str(print_er)) 

    save_path = saver.save(session, '/tmp/model.ckpt') 
    print('model saved') 

    X_t, ids_t, seq_length_t = get_data('test') 

    feed_t = {inputs: X_t, seq_len: seq_length_t} 
    print(X.shape) 
    print(X_t.shape) 
    print(type(seq_length_t[0])) 


    de, lo = session.run([decoded[0], log_probabilities],feed_dict = feed_t) 
    with open('predict.pickle', 'wb') as f: 
     pickle.dump((de, lo), f) 
+0

是網絡完全培訓(培訓錯誤停滯)嗎?由於空練習通常在訓練開始時遇到。例如。搜索「CTC中有趣的空白標籤」。不,你不必爲目標化妝品添加空白。這些空白僅供(CTC)內部使用。 – Harry

回答

0

我得到了同樣的問題,並通過提高初始學習率解決。

另外,在驗證集上輸出LER對於檢查訓練過程的進度是必要的。