3
好吧,我通過預測Tensorflow中特定產品質量是好還是壞的樣本。我的代碼最後一段是這樣的:如何打印Tensorflow中的預測
# Merge summaries for TensorBoard
merged_summaries = tf.summary.merge_all()
with tf.Session() as sess:
log_directory = create_log_directory()
summary_writer = tf.summary.FileWriter(log_directory, sess.graph)
tf.global_variables_initializer().run()
for i in range(epochs):
average_cost = 0
number_of_batches = int(len(X_train)/batch_size)
for start, end in zip(range(0, len(X_train), batch_size), range(batch_size, len(X_train), batch_size)):
feed = {X: X_train[start:end], y: y_train[start:end]}
sess.run(training_step, feed_dict=feed)
# Compute average loss
average_cost += sess.run(cost, feed_dict=feed)/number_of_batches
if i % epochs_to_print == 0:
feed = {X: X_test, y: y_test}
result = sess.run([merged_summaries, accuracy], feed_dict=feed)
summary = result[0]
current_accuracy = result[1]
summary_writer.add_summary(summary, i)
print("Epoch: {:4d}, average cost = {:.3f}, accuracy = {:.3f}".format(i+1, average_cost, current_accuracy))
print("Final accuracy = {:.3f}".format(sess.run(accuracy, feed_dict={X: X_test, y: y_test})))
它提出了一個漂亮的一套10個時代,在0.527的準確性排在前列,我以爲是52.7%的準確率。
Saving summaries to tmp/logs/run_32/
Epoch: 1, average cost = 3.300, accuracy = 0.174
Epoch: 101, average cost = 0.685, accuracy = 0.528
Epoch: 201, average cost = 0.682, accuracy = 0.527
Epoch: 301, average cost = 0.680, accuracy = 0.527
Epoch: 401, average cost = 0.680, accuracy = 0.527
Epoch: 501, average cost = 0.679, accuracy = 0.527
Epoch: 601, average cost = 0.679, accuracy = 0.527
Epoch: 701, average cost = 0.679, accuracy = 0.527
Epoch: 801, average cost = 0.679, accuracy = 0.527
Epoch: 901, average cost = 0.679, accuracy = 0.527
Final accuracy = 0.527
的問題是,現在,我想從(大概)在短短的1行數據的反饋一個numpy的陣列到Tensorflow得到的預測。我該怎麼做呢?我認爲它遵循如下模式:
input =[1.939501945438227,-1.8459679631200792,1.9134581818982566,-0.6741964131111666,-0.5720868389043996,0.3926397708073837,-2.0777995164924112,0.03405362776450469,0.33621509508483066]
output = <<some function call here>>
print(output)