0
CSV文件的神經網絡,我使用兩個教程弄清楚如何採取格式的CVS文件:在TensorFlow
feature1,feature2....feature20,label
feature1,feature2....feature20,label
...
,並在其上訓練神經網絡。我在下面的代碼中執行的操作是在CVS文件中讀取,並且一次成批地分組爲100行:x_batch和y_batch。接下來,我嘗試讓NN分批學習。不過,我得到以下錯誤:
"ValueError: Cannot feed value of shape (99,) for Tensor 'Placeholder_1:0', which has shape '(?, 4)'"
我想知道我做錯了什麼其他的方法可能是。
import tensorflow as tf
filename_queue = tf.train.string_input_producer(["VOL_TRAIN.csv"])
line_reader = tf.TextLineReader(skip_header_lines=1)
_, csv_row = line_reader.read(filename_queue)
# Type information and column names based on the decoded CSV.
[[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[""]]
record_defaults = [[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0]]
in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20,out = \
tf.decode_csv(csv_row, record_defaults=record_defaults)
# Turn the features back into a tensor.
features = tf.pack([in1,in2,in3,in4,in5,in6,in7,in8,in9,in10,in11,in12,in13,in14,in15,in16,in17,in18,in19,in20])
# Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1
num_examples= 33500
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 20 # MNIST data input (img shape: 28*28)
n_classes = 4 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.global_variables_initializer()
with tf.Session() as sess:
#tf.initialize_all_variables().run()
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x = []
batch_y = []
for iteration in range(1, batch_size):
example, label = sess.run([features, out])
batch_x.append(example)
batch_y.append(label)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c/total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
print ("Optimization Finished!")
coord.request_stop()
coord.join(threads)
'batch_y'似乎是'(99,)',但是你期望有'n_class'的東西。 – drpng
作爲一個方面說明:根據'batch_size = 100'你想批量大小爲100,但實際上你使用的是批量爲99的批次。 – kaufmanu