0
我正在嘗試frbcs.w函數並使用虹膜數據的示例代碼來訓練和測試數據。我的數據是370評論的10個特徵的得分。所以它是一個10×370的矩陣。我第一次使用R,即使在僅僅採集了與虹膜數據集相似的一部分數據之後,它也是如下所示的顯示和錯誤:無效'ncol'值(<0)R
Error in matrix(nrow = nrow(rule.data.num), ncol = 2 * ncol(rule.data.num) - : invalid 'ncol' value (< 0)
我的數據集的CSV格式:dataset 我也從我的370條評論點擊這裏加入數據集中的20條點評的樣本:
F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,OUTPUT
0,0,0,0,0,0,0,0,0,0,high
0,0.541667,0,0,0,0.455729,0,0,0,0,high
0,0,0,0,0,0.375,0,0,0,0,high
0.333333,0,0,0,0,0.575,0,0,0,0,medium
0.5,0.5,0,0,0,0.333333,0,0,1,0.625,high
0,0,0,0,0,0.6875,0,0,0,0.875,high
0,0.125,0,0,0,0.234375,0,0,0,0,medium
0.375,0,0,0,0,0.5,0,0,0,0,low
0,0,0,0,0,0,0,0,0,0,low
0,0,0,0,0,0.244792,0,0,0,0,low
0.234375,0.875,0,0.234375,0,0.5,0,0,0,0.5,low
0,0,0,0,0,0.643229,0,0,0,0.25,high
0,0.40625,1,0,0,0.421875,0,0,0,0,low
0.875,0.375,1,0,0,0.810547,0,0,0,0.375,high
0,0,0,0,0,0,0,0,0,0,high
0,0,0,0,0,0.187798,0,0,0,0.875,low
1,0,0,0,0,0,0,0,0,0.125,high
0.0625,0,0.5,0.5,0,0.5,0,0,0.9375,0.833333,medium
0,0,0,0,0,0.875,0,0,0,0,low
0,0,0,0.25,0,0,0,0,0,0,high
的代碼我想的是:
library(frbs)
ir <- read.csv("Output3.csv")
set.seed(2)
irShuffled <- ir[sample(nrow(ir)),]
irShuffled[,11] <- unclass(irShuffled[,11])
tra.ir <- irShuffled[1:300,]
tst.ir <- irShuffled[301:nrow(irShuffled),1:10]
real.ir <- matrix(irShuffled[301:nrow(irShuffled),11], ncol = 1)
range.data.input <- matrix(c(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), nrow=2)
method.type <- "FRBCS.W"
control <- list(num.labels = 7, type.mf = "GAUSSIAN", type.tnorm = "MIN",
type.snorm = "MAX", type.implication.func = "ZADEH")
## Generate fuzzy model
object <- frbs.learn(tra.ir, range.data.input, method.type, control)
## Predicting step
res.test <- predict(object, tst.ir)
## error calculation
err = 100*sum(real.ir!=res.test)/nrow(real.ir)
print("The result: ")
print(res.test)
print("FRBCS.W: percentage Error on Ir-")
print(err)
您的文章沒有下文取代你的程序[MCVE指引](https://stackoverflow.com/help/mcve)。請包括數據集的一個小部分作爲問題的一部分,而不是鏈接到完整的數據集。 –
根據您的建議,我已經在鏈接中添加了370條評論中的20條評論。 –