我發現這個代碼在github中的quickselect
算法,否則被稱爲order-statistics
。此代碼工作正常。使用在java中實現的中值選擇快速選擇樞軸?
我不明白medianOf3
方法,它應該按排序順序排列第一個,中間和最後一個索引。但在調用medianof3
方法後輸出數組時實際上不會。 我可以按照這個方法去做,除了最後一次呼叫swap(list, centerIndex, rightIndex - 1);
。有人可以解釋爲什麼這被稱爲?
import java.util.Arrays;
/**
* This program determines the kth order statistic (the kth smallest number in a
* list) in O(n) time in the average case and O(n^2) time in the worst case. It
* achieves this through the Quickselect algorithm.
*
* @author John Kurlak <[email protected]>
* @date 1/17/2013
*/
public class Quickselect {
/**
* Runs the program with an example list.
*
* @param args The command-line arguments.
*/
public static void main(String[] args) {
int[] list = { 3, 5, 9, 10, 7, 40, 23, 45, 21, 2 };
int k = 6;
int median = medianOf3(list, 0, list.length-1);
System.out.println(median);
System.out.println("list is "+ Arrays.toString(list));
Integer kthSmallest = quickselect(list, k);
if (kthSmallest != null) {
System.out.println("The kth smallest element in the list where k=" + k + " is " + kthSmallest + ".");
} else {
System.out.println("There is no kth smallest element in the list where k=" + k + ".");
}
System.out.println(Arrays.toString(list));
}
/**
* Determines the kth order statistic for the given list.
*
* @param list The list.
* @param k The k value to use.
* @return The kth order statistic for the list.
*/
public static Integer quickselect(int[] list, int k) {
return quickselect(list, 0, list.length - 1, k);
}
/**
* Recursively determines the kth order statistic for the given list.
*
* @param list The list.
* @param leftIndex The left index of the current sublist.
* @param rightIndex The right index of the current sublist.
* @param k The k value to use.
* @return The kth order statistic for the list.
*/
public static Integer quickselect(int[] list, int leftIndex, int rightIndex, int k) {
// Edge case
if (k < 1 || k > list.length) {
return null;
}
// Base case
if (leftIndex == rightIndex) {
return list[leftIndex];
}
// Partition the sublist into two halves
int pivotIndex = randomPartition(list, leftIndex, rightIndex);
int sizeLeft = pivotIndex - leftIndex + 1;
// Perform comparisons and recurse in binary search/quicksort fashion
if (sizeLeft == k) {
return list[pivotIndex];
} else if (sizeLeft > k) {
return quickselect(list, leftIndex, pivotIndex - 1, k);
} else {
return quickselect(list, pivotIndex + 1, rightIndex, k - sizeLeft);
}
}
/**
* Randomly partitions a set about a pivot such that the values to the left
* of the pivot are less than or equal to the pivot and the values to the
* right of the pivot are greater than the pivot.
*
* @param list The list.
* @param leftIndex The left index of the current sublist.
* @param rightIndex The right index of the current sublist.
* @return The index of the pivot.
*/
public static int randomPartition(int[] list, int leftIndex, int rightIndex) {
int pivotIndex = medianOf3(list, leftIndex, rightIndex);
int pivotValue = list[pivotIndex];
int storeIndex = leftIndex;
swap(list, pivotIndex, rightIndex);
for (int i = leftIndex; i < rightIndex; i++) {
if (list[i] <= pivotValue) {
swap(list, storeIndex, i);
storeIndex++;
}
}
swap(list, rightIndex, storeIndex);
return storeIndex;
}
/**
* Computes the median of the first value, middle value, and last value
* of a list. Also rearranges the first, middle, and last values of the
* list to be in sorted order.
*
* @param list The list.
* @param leftIndex The left index of the current sublist.
* @param rightIndex The right index of the current sublist.
* @return The index of the median value.
*/
public static int medianOf3(int[] list, int leftIndex, int rightIndex) {
int centerIndex = (leftIndex + rightIndex)/2;
if (list[leftIndex] > list[rightIndex]) {
swap(list, leftIndex, centerIndex);
}
if (list[leftIndex] > list[rightIndex]) {
swap(list, leftIndex, rightIndex);
}
if (list[centerIndex] > list[rightIndex]) {
swap(list, centerIndex, rightIndex);
}
swap(list, centerIndex, rightIndex - 1);
return rightIndex - 1;
}
/**
* Swaps two elements in a list.
*
* @param list The list.
* @param index1 The index of the first element to swap.
* @param index2 The index of the second element to swap.
*/
public static void swap(int[] list, int index1, int index2) {
int temp = list[index1];
list[index1] = list[index2];
list[index2] = temp;
}
}
我不在乎如何實現排序的前提條件:swap(list,centerIndex,rightIndex - 1)'。忽略這一點,仍然會在快速選中時遞歸到單向。 –
此時中心元素小於右邊元素。所以當你用(rightIndex - 1)th元素交換中心元素時,你已經排序了該子列表的最後兩個元素。之後,您將中心元素的較小元素(位於右側的位置(rightIndex - 1))向左移動並且向右移動。最後,將中心元素放到右側位置:swap(list,rightIndex,storeIndex) – user987339
你是指「在這之後你正在將中心元素的較小元素移動到......」,我不明白這一點,是否可以用一個簡單的數組來說明5個或更少的元素?謝謝 –