我正在使用DEAP庫來最大化度量,並且我注意到每當我重新啓動算法(應該創建一個二進制值的隨機列表 - 1和0)時,它會產生相同的初始值。如何用DEAP產生不同的隨機結果?
我變得可疑並複製其basic DEAP example here並再次重新運行該算法:
import array, random
from deap import creator, base, tools, algorithms
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", array.array, typecode='b', fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 10)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
def evalOneMax(individual):
return sum(individual),
toolbox.register("evaluate", evalOneMax)
toolbox.register("mate", tools.cxTwoPoints)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
population = toolbox.population(n=10)
NGEN=40
for gen in range(NGEN):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = offspring
上面的代碼正是他們的例子,但與人口和個人尺寸減小到10。我跑的算法5時間,它產生了彼此的確切副本。我還添加了一個print語句得到下面的輸出:
>python testGA.py
[1, 0, 1, 0, 1, 0, 1, 1, 1, 1]
Starting the Evolution Algorithm...
Evaluating Individual: [0, 1, 0, 1, 0, 1, 1, 1, 1, 0]
Evaluating Individual: [1, 1, 0, 1, 0, 1, 0, 1, 0, 0]
Evaluating Individual: [0, 0, 1, 0, 0, 1, 1, 0, 0, 1]
Evaluating Individual: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Evaluating Individual: [0, 1, 1, 0, 1, 0, 1, 1, 0, 1]
Evaluating Individual: [1, 0, 1, 1, 1, 0, 0, 1, 0, 0]
Evaluating Individual: [0, 1, 0, 0, 0, 1, 0, 0, 0, 1]
Evaluating Individual: [1, 1, 0, 1, 0, 1, 0, 1, 1, 1]
Evaluating Individual: [1, 1, 1, 1, 0, 0, 1, 0, 0, 0]
Evaluating Individual: [0, 0, 1, 1, 1, 1, 0, 1, 1, 1]
這個輸出產生我每次調用該函數的時間 - 在這個順序。它們完全相同。
我讀過,我不應該種子random.randint函數,我測試它通過編寫一個基本的腳本,打印出10個隨機整數範圍爲0到1列表。這工作正常,它只是當我通過DEAP提供它時似乎產生相同的值。
這是正常的嗎?我怎樣才能確保,當我運行算法時,我每次都得到不同的「個人」?
編輯:
很抱歉這麼晚纔回復,這裏是我使用的完整源:
import random, sys
from deap import creator, base, tools
class Max():
def __init__(self):
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
INDIVIDUAL_SIZE = 10
self.toolbox = base.Toolbox()
self.toolbox.register("attr_bool", random.randint, 0, 1)
self.toolbox.register("individual", tools.initRepeat, creator.Individual, self.toolbox.attr_bool, n=INDIVIDUAL_SIZE)
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("mate", tools.cxTwoPoints)
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
self.toolbox.register("select", tools.selTournament, tournsize=3)
self.toolbox.register("evaluate", self.evaluate)
print self.main()
def evaluate(self, individual):
# Some debug code
print 'Evaluating Individual: ' + str(individual)
return sum(individual),
def main(self):
CXPB, MUTPB, NGEN = 0.5, 0.2, 40
random.seed(64)
pop = self.toolbox.population(n=10)
print "Starting the Evolution Algorithm..."
fitnesses = list(map(self.toolbox.evaluate, pop))
for ind, fit in zip(pop, fitnesses):
ind.fitness.values = fit
# ----------------------------------------------------------
# Killing the program here - just want to see the population created
sys.exit()
print "Evaluated %i individuals" % (len(pop))
for g in range(NGEN):
print "-- Generation %i --" % (g)
# Select the next genereation individuals
offspring = self.toolbox.select(pop, len(pop))
# Clone the selected individuals
offspring = list(map(self.toolbox.clone, offspring))
# Apply crossover and mutation on the offspring
for child1, child2 in zip(offspring[::2], offspring[1::2]):
if random.random() < CXPB:
self.toolbox.mate(child1, child2)
del child1.fitness.values
del child2.fitness.values
for mutant in offspring:
if random.random() < MUTPB:
self.toolbox.mutate(mutant)
del mutant.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = map(self.toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
print "\tEvaluated %i individuals" % (len(pop))
pop[:] = offspring
fits = [ind.fitness.values[0] for ind in pop]
length = len(pop)
mean = sum(fits)/length
sum2 = sum(x*x for x in fits)
std = abs(sum2/length - mean**2)**0.5
print "\tMin %s" % (min(fits))
print "\tMax %s" % (max(fits))
print "\tAvg %s" % (mean)
print "\tStd %s" % (std)
class R_Test:
def __init__(self):
print str([random.randint(0, 1) for i in range(10)])
if __name__ == '__main__':
#rt = R_Test()
mx = Max()
的R_Test類是有沒有在Python測試隨機生成。我讀here即使沒有在Python中給出種子,也會動態調用種子,我想測試它。
如何我一直在執行上面的代碼一直是這樣:
> python testGA.py
... the 10 outputs
> python testGA.py
... the exact same outputs
> python testGA.py
... the exact same outputs
> python testGA.py
... the exact same outputs
> python testGA.py
... the exact same outputs
顯然5次不完全是一個艱苦的考驗,但事實證明,所有的10個值是相同的5次連續舉起一面紅旗。
在源代碼中似乎沒有任何對'random.seed'的引用。 – Blender
如果明確調用'random.seed()',會發生什麼?值是否改變了? –
我是DEAP首席開發人員之一。你所觀察到的是不正常的,但我無法用你提供的代碼重現它。你能提出你使用的確切代碼嗎? – CmdNtrf