2
下面的代碼:如何訂購聚合輸出?
library("C50")
portuguese_scores = read.table("https://raw.githubusercontent.com/JimGorman17/Datasets/master/student-por.csv",sep=";",header=TRUE)
portuguese_scores <- portuguese_scores[,!names(portuguese_scores) %in% c("school", "age", "G1", "G2")]
median_score <- summary(portuguese_scores$G3)['Median']
portuguese_scores$score_gte_than_median <- as.factor(median_score<=portuguese_scores$G3)
portuguese_scores <- portuguese_scores[,!names(portuguese_scores) %in% c("G3")]
set.seed(123)
train_sample <- sample(nrow(portuguese_scores), .9 * nrow(portuguese_scores))
port_train <- portuguese_scores[train_sample,]
learn_DF <- data.frame()
algorithm <- "C5.0 Decision Tree"
for (i in seq(15,100,by=1)) {
pct_of_training_data <- sample(nrow(port_train), i/100 * nrow(port_train))
port_train_pct <- port_train[pct_of_training_data,]
fit <- C5.0(score_gte_than_median ~ ., data=port_train_pct)
learn_DF <- rbind(learn_DF, data.frame(pct_of_training_set=i, err_pct=sum(predict(fit,port_train_pct) != port_train_pct$score_gte_than_median)/nrow(port_train_pct), type="train", algorithm=algorithm))
}
for (h in seq(.1, .9, by=.1)) {
algorithm <- paste("Pruning with confidence (",h,")")
for (i in seq(15,100,by=1)) {
pct_of_training_data <- sample(nrow(port_train), i/100 * nrow(port_train))
port_train_pct <- port_train[pct_of_training_data,]
ctrl=C5.0Control(CF=h)
fit <- C5.0(score_gte_than_median ~ ., data=port_train_pct, ctrl=ctrl)
learn_DF <- rbind(learn_DF, data.frame(pct_of_training_set=i, err_pct=sum(predict(fit,port_train_pct) != port_train_pct$score_gte_than_median)/nrow(port_train_pct), type="train", algorithm=algorithm))
}
}
aggregate(err_pct~algorithm,data=learn_DF,mean)
生成以下的輸出:
algorithm err_pct
1 C5.0 Decision Tree 0.09895810
2 Pruning with confidence (0.1) 0.09288930
3 Pruning with confidence (0.2) 0.09935209
4 Pruning with confidence (0.3) 0.09496267
5 Pruning with confidence (0.4) 0.09724305
6 Pruning with confidence (0.5) 0.09721156
7 Pruning with confidence (0.6) 0.09695104
8 Pruning with confidence (0.7) 0.10041991
9 Pruning with confidence (0.8) 0.09881957
10 Pruning with confidence (0.9) 0.09611947
我的問題:
- 我如何,而不是由
algorithm
排序該網格由err_pct
?