2011-08-15 71 views
3

我正在開發的一個項目使用Apache Shiro作爲安全框架。密碼被SHA1哈希(不加鹽,不迭代)。登錄是SSL安全的。但是,應用程序的其餘部分不受SSL保護。在這種情況下(沒有SSL),應該有一個表單,用戶可以更改密碼。 由於傳輸它不是一個好主意,它應該在客戶端散列,然後傳輸到服務器。由於客戶端是基於GWT(2.3),我正在嘗試使用這個庫http://code.google.com/p/gwt-crypto,它使用來自bouncycastle的代碼。 但是,在許多情況下(不是全部),由兩個框架生成的哈希在1-4(?)字符中不同。 例如 「happa3」 是由兩種實現散列到SHA1哈希值差異不大

"fe7f3cffd8a5f0512a5f1120f1369f48cd6f47c2" 

,而只是 「happa」 由四郎執行和

"fb3c3a741b4e07a87d9cb63f3db020d6fbfed00a" 

通過散列到

"fb3c3a741b4e07a87d9cb68f3db020d6fbfed00a" 

gwt-crypto實現(第23個字符不同)。 我想知道是否存在「正確」/標準的SHA1哈希以及其中一個庫中是否存在錯誤,或者我的使用是否有缺陷。 由於不同的傳輸機制(RPC與Post),我的第一個想法之一與不同的編碼或奇怪的轉換有關。據我所知(最讓我感到困惑的是),如果只有一位差異,SHA1散列應該以很高的概率完全不同。所以不同的編碼不應該成爲這裏的問題。 我使用的客戶端(GWT)在此代碼爲散列:

String hashed = toHex(createSHA1Hash("password")); 
... 
private String createSHA1Hash(String passwordString){ 
    SHA1Digest sha1 = new SHA1Digest(); 
    byte[] bytes; 
    byte[] result = new byte[sha1.getDigestSize()]; 
    try { 
     bytes = passwordString.getBytes(); 
     sha1.update(bytes, 0, bytes.length); 
     int val = sha1.doFinal(result, 0); 
    } catch (UnsupportedEncodingException e) {} 
    return new String(result); 
} 

public String toHex(String arg) { 
    return new BigInteger(1, arg.getBytes()).toString(16); 
} 

而這個服務器(四郎)上:

String hashed = new Sha1Hash("password").toHex() 

這AFAICS做幕後的一些非常相似(有快速查看源代碼)。 我在這裏錯過了一些明顯的東西嗎?

編輯:似乎GWT代碼由於某種原因(即只是在開發模式下)不能以本機方式運行,並且默默地失敗(雖然它會編譯)。必須找出原因......

編輯(2):「int val = sha1.doFinal(result,0);」是製造麻煩的路線,即如果存在的話,整個代碼本身不運行(JS),但只有在開發模式(與錯誤的結果)

+0

無鹽=安全性低。 –

+3

您爲Shiro實現顯示的sha1哈希值是正確的。你從gwt-crypto實現中獲得的稍微不同的sha1哈希表明* something *是嚴重錯誤的。我不知道它是什麼。 (是的,對於任何輸入都有正確的標準sha1散列值;這就是整個要點。) –

+0

您可以在線檢查SHA-1(例如,第一個谷歌結果:http://www.tools4noobs.com/online_php_functions/sha1/)。看起來Shiro是正確的,GWT是錯誤的,但不知道爲什麼。 –

回答

2

您可以測試這個版本:

public class SHA1 { 

    public static native String calcSHA1(String s) /*-{ 
     // 
     // A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined 
     // in FIPS 180-1 
     // Version 2.2 Copyright Paul Johnston 2000 - 2009. 
     // Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet 
     // Distributed under the BSD License 
     // See http://pajhome.org.uk/crypt/md5 for details. 
     // 

     // 
     // Configurable variables. You may need to tweak these to be compatible with 
     // the server-side, but the defaults work in most cases. 
     // 
     var hexcase = 0; // hex output format. 0 - lowercase; 1 - uppercase   
     var b64pad = ""; // base-64 pad character. "=" for strict RFC compliance 

     // 
     // These are the functions you'll usually want to call 
     // They take string arguments and return either hex or base-64 encoded strings 
     // 

     function b64_sha1(s) { return rstr2b64(rstr_sha1(str2rstr_utf8(s))); } 
     function any_sha1(s, e) { return rstr2any(rstr_sha1(str2rstr_utf8(s)), e); } 
     function hex_hmac_sha1(k, d) 
      { return rstr2hex(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } 
     function b64_hmac_sha1(k, d) 
      { return rstr2b64(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d))); } 
     function any_hmac_sha1(k, d, e) 
      { return rstr2any(rstr_hmac_sha1(str2rstr_utf8(k), str2rstr_utf8(d)), e); } 

     // 
     // Perform a simple self-test to see if the VM is working 
     // 
     function sha1_vm_test() 
     { 
      return hex_sha1("abc").toLowerCase() == "a9993e364706816aba3e25717850c26c9cd0d89d"; 
     } 

     // 
     // Calculate the SHA1 of a raw string 
     // 
     function rstr_sha1(s) 
     { 
      return binb2rstr(binb_sha1(rstr2binb(s), s.length * 8)); 
     } 

     // 
     // Calculate the HMAC-SHA1 of a key and some data (raw strings) 
     // 
     function rstr_hmac_sha1(key, data) 
     { 
      var bkey = rstr2binb(key); 
      if(bkey.length > 16) bkey = binb_sha1(bkey, key.length * 8); 

      var ipad = Array(16), opad = Array(16); 
      for(var i = 0; i < 16; i++) 
      { 
      ipad[i] = bkey[i]^0x36363636; 
      opad[i] = bkey[i]^0x5C5C5C5C; 
      } 

      var hash = binb_sha1(ipad.concat(rstr2binb(data)), 512 + data.length * 8); 
      return binb2rstr(binb_sha1(opad.concat(hash), 512 + 160)); 
     } 

     // 
     // Convert a raw string to a hex string 
     // 
     function rstr2hex(input) 
     { 
      try { hexcase } catch(e) { hexcase=0; } 
      var hex_tab = hexcase ? "ABCDEF" : "abcdef"; 
      var output = ""; 
      var x; 
      for(var i = 0; i < input.length; i++) 
      { 
      x = input.charCodeAt(i); 
      output += hex_tab.charAt((x >>> 4) & 0x0F) 
        + hex_tab.charAt(x  & 0x0F); 
      } 
      return output; 
     } 

     // 
     // Convert a raw string to a base-64 string 
     // 
     function rstr2b64(input) 
     { 
      try { b64pad } catch(e) { b64pad=''; } 
      var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz/"; 
      var output = ""; 
      var len = input.length; 
      for(var i = 0; i < len; i += 3) 
      { 
      var triplet = (input.charCodeAt(i) << 16) 
         | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) 
         | (i + 2 < len ? input.charCodeAt(i+2)  : 0); 
      for(var j = 0; j < 4; j++) 
      { 
       if(i * 8 + j * 6 > input.length * 8) output += b64pad; 
       else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); 
      } 
      } 
      return output; 
     } 

     // 
     // Convert a raw string to an arbitrary string encoding 
     // 
     function rstr2any(input, encoding) 
     { 
      var divisor = encoding.length; 
      var remainders = Array(); 
      var i, q, x, quotient; 

      // Convert to an array of 16-bit big-endian values, forming the dividend 
      var dividend = Array(Math.ceil(input.length/2)); 
      for(i = 0; i < dividend.length; i++) 
      { 
      dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); 
      } 

      // 
      // Repeatedly perform a long division. The binary array forms the dividend, 
      // the length of the encoding is the divisor. Once computed, the quotient 
      // forms the dividend for the next step. We stop when the dividend is zero. 
      // All remainders are stored for later use. 
      // 
      while(dividend.length > 0) 
      { 
      quotient = Array(); 
      x = 0; 
      for(i = 0; i < dividend.length; i++) 
      { 
       x = (x << 16) + dividend[i]; 
       q = Math.floor(x/divisor); 
       x -= q * divisor; 
       if(quotient.length > 0 || q > 0) 
       quotient[quotient.length] = q; 
      } 
      remainders[remainders.length] = x; 
      dividend = quotient; 
      } 

      // Convert the remainders to the output string 
      var output = ""; 
      for(i = remainders.length - 1; i >= 0; i--) 
      output += encoding.charAt(remainders[i]); 

      // Append leading zero equivalents 
      var full_length = Math.ceil(input.length * 8/
              (Math.log(encoding.length)/Math.log(2))) 
      for(i = output.length; i < full_length; i++) 
      output = encoding[0] + output; 

      return output; 
     } 

     // 
     // Encode a string as utf-8. 
     // For efficiency, this assumes the input is valid utf-16. 
     // 
     function str2rstr_utf8(input) 
     { 
      var output = ""; 
      var i = -1; 
      var x, y; 

      while(++i < input.length) 
      { 
       // Decode utf-16 surrogate pairs 
      x = input.charCodeAt(i); 
      y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; 
      if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) 
      { 
       x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); 
       i++; 
      } 

      // Encode output as utf-8 
      if(x <= 0x7F) 
       output += String.fromCharCode(x); 
      else if(x <= 0x7FF) 
       output += String.fromCharCode(0xC0 | ((x >>> 6) & 0x1F), 
              0x80 | (x   & 0x3F)); 
      else if(x <= 0xFFFF) 
       output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), 
              0x80 | ((x >>> 6) & 0x3F), 
              0x80 | (x   & 0x3F)); 
      else if(x <= 0x1FFFFF) 
       output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), 
              0x80 | ((x >>> 12) & 0x3F), 
              0x80 | ((x >>> 6) & 0x3F), 
              0x80 | (x   & 0x3F)); 
      } 
      return output; 
     } 

     // 
     // Encode a string as utf-16 
     // 
     function str2rstr_utf16le(input) 
     { 
      var output = ""; 
      for(var i = 0; i < input.length; i++) 
      output += String.fromCharCode(input.charCodeAt(i)  & 0xFF, 
              (input.charCodeAt(i) >>> 8) & 0xFF); 
      return output; 
     } 

     function str2rstr_utf16be(input) 
     { 
      var output = ""; 
      for(var i = 0; i < input.length; i++) 
      output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, 
              input.charCodeAt(i)  & 0xFF); 
      return output; 
     } 

     // 
     // Convert a raw string to an array of big-endian words 
     // Characters >255 have their high-byte silently ignored. 
     // 
     function rstr2binb(input) 
     { 
      var output = Array(input.length >> 2); 
      for(var i = 0; i < output.length; i++) 
      output[i] = 0; 
      for(var i = 0; i < input.length * 8; i += 8) 
      output[i>>5] |= (input.charCodeAt(i/8) & 0xFF) << (24 - i % 32); 
      return output; 
     } 

     // 
     // Convert an array of big-endian words to a string 
     // 
     function binb2rstr(input) 
     { 
      var output = ""; 
      for(var i = 0; i < input.length * 32; i += 8) 
      output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); 
      return output; 
     } 

     // 
     // Calculate the SHA-1 of an array of big-endian words, and a bit length 
     // 
     function binb_sha1(x, len) 
     { 
      // append padding 
      x[len >> 5] |= 0x80 << (24 - len % 32); 
      x[((len + 64 >> 9) << 4) + 15] = len; 

      var w = Array(80); 
      var a = 1732584193; 
      var b = -271733879; 
      var c = -1732584194; 
      var d = 271733878; 
      var e = -1009589776; 

      for(var i = 0; i < x.length; i += 16) 
      { 
      var olda = a; 
      var oldb = b; 
      var oldc = c; 
      var oldd = d; 
      var olde = e; 

      for(var j = 0; j < 80; j++) 
      { 
       if(j < 16) w[j] = x[i + j]; 
       else w[j] = bit_rol(w[j-3]^w[j-8]^w[j-14]^w[j-16], 1); 
       var t = safe_add(safe_add(bit_rol(a, 5), sha1_ft(j, b, c, d)), 
           safe_add(safe_add(e, w[j]), sha1_kt(j))); 
       e = d; 
       d = c; 
       c = bit_rol(b, 30); 
       b = a; 
       a = t; 
      } 

      a = safe_add(a, olda); 
      b = safe_add(b, oldb); 
      c = safe_add(c, oldc); 
      d = safe_add(d, oldd); 
      e = safe_add(e, olde); 
      } 
      return Array(a, b, c, d, e); 

     } 

     // 
     // Perform the appropriate triplet combination function for the current 
     // iteration 
     // 
     function sha1_ft(t, b, c, d) 
     { 
      if(t < 20) return (b & c) | ((~b) & d); 
      if(t < 40) return b^c^d; 
      if(t < 60) return (b & c) | (b & d) | (c & d); 
      return b^c^d; 
     } 

     // 
     // Determine the appropriate additive constant for the current iteration 
     // 
     function sha1_kt(t) 
     { 
      return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : 
       (t < 60) ? -1894007588 : -899497514; 
     } 

     // 
     // Add integers, wrapping at 2^32. This uses 16-bit operations internally 
     // to work around bugs in some JS interpreters. 
     // 
     function safe_add(x, y) 
     { 
      var lsw = (x & 0xFFFF) + (y & 0xFFFF); 
      var msw = (x >> 16) + (y >> 16) + (lsw >> 16); 
      return (msw << 16) | (lsw & 0xFFFF); 
     } 

     // 
     // Bitwise rotate a 32-bit number to the left. 
     // 
     function bit_rol(num, cnt) 
     { 
      return (num << cnt) | (num >>> (32 - cnt)); 
     } 

     return rstr2hex(rstr_sha1(str2rstr_utf8(s))); 
    }-*/; 
} 

我在我的客戶端一代中使用它,它運行良好。

+0

mmhmm ...我想我可以記得gwt-crypto在我測試時沒有計算出正確的散列值它半年前...我想這就是我使用上面的代碼的原因 – thomas