2
這裏需要幫助,這個布爾表達式的簡化形式是什麼? 我對此有點困惑,幫幫我!簡化布爾表達式A'BC + AB'C + A'B'C'+ AB'C + ABC
A'BC + AB'C + A'B'C' + AB'C + ABC
這裏需要幫助,這個布爾表達式的簡化形式是什麼? 我對此有點困惑,幫幫我!簡化布爾表達式A'BC + AB'C + A'B'C'+ AB'C + ABC
A'BC + AB'C + A'B'C' + AB'C + ABC
假設⋅操作者表示二進制相結合,+二進制析取和'或¬一元否定,可以應用的Boolean algebra規律:
¬a⋅b⋅c + a⋅¬b⋅c + ¬a⋅¬b⋅¬c + a⋅¬b⋅c + a⋅b⋅c
¬a⋅b⋅c + a⋅¬b⋅c + ¬a⋅¬b⋅¬c + a⋅b⋅c //idempotence of +: a⋅¬b⋅c + a⋅¬b⋅c = a⋅¬b⋅c
b⋅c⋅(¬a + a) + a⋅¬b⋅c + ¬a⋅¬b⋅¬c //distributivity:¬a⋅b⋅c + a⋅b⋅c = b⋅c⋅(¬a + a)
b⋅c⋅(1) + a⋅¬b⋅c + ¬a⋅¬b⋅¬c //complementation: ¬a + a = 1
b⋅c + a⋅¬b⋅c + ¬a⋅¬b⋅¬c //identity for ⋅: b⋅c⋅(1) = b⋅c
b⋅c + a⋅b⋅c + a⋅¬b⋅c + ¬a⋅¬b⋅¬c //absorption: b⋅c = b⋅c + a⋅b⋅c
b⋅c + a⋅c⋅(b + ¬b) + ¬a⋅¬b⋅¬c //distributivity: a⋅b⋅c + a⋅¬b⋅c = a⋅c⋅(b + ¬b)
b⋅c + a⋅c⋅(1) + ¬a⋅¬b⋅¬c //complementation: b + ¬b = 1
b⋅c + a⋅c + ¬a⋅¬b⋅¬c //identity for ⋅: a⋅c⋅(1) = a⋅c
最後一行是原始表達的最小DNF。你也可以將它到它的最小CNF:
b⋅c + a⋅c + ¬a⋅¬b⋅¬c
(b⋅c + a⋅c) + (¬a⋅¬b⋅¬c)
((b⋅c + a⋅c) + ¬a)⋅((b⋅c + a⋅c) + ¬b)⋅((b⋅c + a⋅c) + ¬c) //distributivity
(b⋅c + a⋅c + ¬a) ⋅ (b⋅c + a⋅c + ¬b) ⋅ (b⋅c + a⋅c + ¬c)
(b⋅c + c + ¬a) ⋅ (b⋅c + a⋅c + ¬b) ⋅ (b⋅c + a⋅c + ¬c) //absorption
(b⋅c + c + ¬a) ⋅ (c + a⋅c + ¬b) ⋅ (b⋅c + a⋅c + ¬c) //absorption
(b⋅c + c + ¬a) ⋅ (c + a⋅c + ¬b) ⋅ (b + a + ¬c) //absorption
(c + ¬a) ⋅ (c + a⋅c + ¬b) ⋅ (b + a + ¬c) //absorption
(c + ¬a) ⋅ (c + ¬b) ⋅ (b + a + ¬c) //absorption
(¬a + c)⋅(¬b + c)⋅(a + b + ¬c)
對於這種少量的變量,你也可以使用卡諾圖。在圖片可以看到標註出來三等表達(使用乳膠生成) - 原來,這是最小的DNF,它的最小CNF:
f(a,b,c) = ¬a⋅b⋅c + a⋅¬b⋅c + ¬a⋅¬b⋅¬c + a⋅b⋅c
= b⋅c + a⋅c + ¬a⋅¬b⋅¬c
= (¬a + c)⋅(¬b + c)⋅(a + b + ¬c)
的可能的複製[簡化布爾表達式(A'BC)+(A'B'C)+(A'BC)+(AB'C)](http://stackoverflow.com/questions/21861329/simplifying-boolean-expression-abc-abc-abc -abc) – gmiley
使用[Wolfram Alpha](http://www.wolframalpha.com/input/?i=not+A+and+B+and+C+or+A+and+not+B+and+C +或+ not + A +和+ not + B +和+ not + C +或+ A +和+ not + B +和+ C +或+ A +和+ B +和+ C)作爲指導。 –