可以使用讀取JSON數據
from pyspark import SQLContext
sqlContext = SQLContext(sc)
data_df = sqlContext.read.json("data.json", multiLine = True)
data_df.printSchema()
輸出
root
|-- x: long (nullable = true)
|-- y: struct (nullable = true)
| |-- p: struct (nullable = true)
| | |-- name: string (nullable = true)
| | |-- value: long (nullable = true)
| |-- q: struct (nullable = true)
| | |-- name: string (nullable = true)
| | |-- value: long (nullable = true)
現在你可以從y中列存取數據
data_df.select("y.p.name")
data_df.select("y.p.value")
輸出
abc, 10
好了,解決的辦法是用正確的模式與錯誤的架構
from pyspark.sql.functions import *
from pyspark.sql import Row
df3 = spark.read.json("data.json", multiLine = True)
# create correct schema from old
c = df3.schema['y'].jsonValue()
c['name'] = 'z'
c['type']['fields'][0]['type']['fields'][1]['type'] = 'long'
c['type']['fields'][1]['type']['fields'][1]['type'] = 'long'
y_schema = StructType.fromJson(c['type'])
# define a udf to populate the new column. Row are immuatable so you
# have to build it from start.
def foo(row):
d = Row.asDict(row)
y = {}
y["p"] = {}
y["p"]["name"] = d["p"]["name"]
y["p"]["value"] = int(d["p"]["value"])
y["q"] = {}
y["q"]["name"] = d["q"]["name"]
y["q"]["value"] = int(d["p"]["value"])
return(y)
map_foo = udf(foo, y_schema)
# add the column
df3_new = df3.withColumn("z", map_foo("y"))
# delete the column
df4 = df3_new.drop("y")
df4.printSchema()
輸出
root
|-- x: long (nullable = true)
|-- z: struct (nullable = true)
| |-- p: struct (nullable = true)
| | |-- name: string (nullable = true)
| | |-- value: long (nullable = true)
| |-- q: struct (nullable = true)
| | |-- name: string (nullable = true)
| | |-- value: long (nullable = true)
df4.show()
輸出
添加新的嵌套列,除去列
+---+-------------------+
| x| z|
+---+-------------------+
| 12|[[abc,10],[pqr,10]]|
+---+-------------------+
1.請問這種變化需要是持久的,有改動保存至JSON文件?或者你在進行手術時是否需要精確度? – diek
@diek需要白色書寫json文件 –