1
我想使用pyspark sql將標籤分配給下面的數據框中的分類數字。將標籤分配給PySpark中的表中的分類數據
在婚姻欄1 =已婚,2 =未婚。在教育列1 =梯度和2 =本科生
Current Dataframe: +--------+---------+-----+ |MARRIAGE|EDUCATION|Total| +--------+---------+-----+ | 1| 2| 87| | 1| 1| 123| | 2| 2| 3| | 2| 1| 8| +--------+---------+-----+
Resulting Dataframe: +---------+---------+-----+ |MARRIAGE |EDUCATION|Total| +---------+---------+-----+ |Married |Grad | 87| |Married |UnderGrad| 123| |UnMarried|Grad | 3| |UnMarried|UnderGrad| 8| +---------+---------+-----+
是否有可能使用單個UDF和withColumn()來分配標籤?有沒有什麼辦法通過傳遞整個數據框並保持列名不變,從而在單個UDF中分配?
我可以想出一個解決方案,通過使用單獨的udfs來完成每列的操作,如下所示。但無法弄清楚是否有辦法一起做。
from pyspark.sql import functions as F
def assign_marital_names(record):
if record == 1:
return "Married"
elif record == 2:
return "UnMarried"
def assign_edu_names(record):
if record == 1:
return "Grad"
elif record == 2:
return "UnderGrad"
assign_marital_udf = F.udf(assign_marital_names)
assign_edu_udf = F.udf(assign_edu_names)
df.withColumn("MARRIAGE", assign_marital_udf("MARRIAGE")).\
withColumn("EDUCATION", assign_edu_udf("EDUCATION")).show(truncate=False)