我正在學習Python,並且通過在線資源和此站點上的人員的幫助,我正在掌握它。在我的第一個腳本中,我正在解析Twitter RSS源條目並將結果插入到數據庫中,還有一個我無法修復的問題。即,重複的條目正被插入到其中一個表中。使用sqlite,sqlalchemy,python在數據庫中重複插入
作爲一個背景,我最初在HalOtis.com上發現了一個用於下載RSS源的基本腳本,然後通過幾種方式對其進行了修改:1)修改了Twitter RSS源中的特性(未將其分離爲內容,標題,網址等); 2)添加了「hashtags」和多對多關係(entry_tag表)的表格; 3)將表格設置更改爲sqlalchemy; 4)進行了一些臨時更改,以解決正在發生的奇怪unicode問題。因此,代碼在各個地方都很難看,但它已經成爲一種很好的學習體驗,現在可以工作 - 除了它會在「條目」表中插入重複內容。
因爲我不確定什麼對人最有幫助,所以我粘貼了下面的所有代碼,並在一些地方發表了一些評論,指出我認爲最重要的內容。
我真的很感謝任何幫助。謝謝!
編輯:有人建議我爲數據庫提供模式。我從來沒有這樣做過,所以如果我做得不對,請忍受我。我設置了四個表:
- RSSFeeds,其中包含Twitter的RSS Feed列表
- RSSEntries,其中包含從每個飼料的下載(分析後)個別條目的列表(與內容列,井號標籤,日期,URL)
- 標籤,它包含了所有在每個條目(鳴叫)
- entry_tag,其中包含讓我的標籤映射到項列中發現的井號標籤的列表。
總之,以下腳本從RSS Feeds表中抓取了五個測試RSS源,從每個源下載20個最新的條目/推文,解析條目,並將信息放入RSS條目,標籤,和entry_tag表。
#!/usr/local/bin/python
import sqlite3
import threading
import time
import Queue
from time import strftime
import re
from string import split
import feedparser
from django.utils.encoding import smart_str, smart_unicode
from sqlalchemy import schema, types, ForeignKey, select, orm
from sqlalchemy import create_engine
engine = create_engine('sqlite:///test98.sqlite', echo=True)
metadata = schema.MetaData(engine)
metadata.bind = engine
def now():
return datetime.datetime.now()
#set up four tables, with many-to-many relationship
RSSFeeds = schema.Table('feeds', metadata,
schema.Column('id', types.Integer,
schema.Sequence('feeds_seq_id', optional=True), primary_key=True),
schema.Column('url', types.VARCHAR(1000), default=u''),
)
RSSEntries = schema.Table('entries', metadata,
schema.Column('id', types.Integer,
schema.Sequence('entries_seq_id', optional=True), primary_key=True),
schema.Column('feed_id', types.Integer, schema.ForeignKey('feeds.id')),
schema.Column('short_url', types.VARCHAR(1000), default=u''),
schema.Column('content', types.Text(), nullable=False),
schema.Column('hashtags', types.Unicode(255)),
schema.Column('date', types.String()),
)
tag_table = schema.Table('tag', metadata,
schema.Column('id', types.Integer,
schema.Sequence('tag_seq_id', optional=True), primary_key=True),
schema.Column('tagname', types.Unicode(20), nullable=False, unique=True),
)
entrytag_table = schema.Table('entrytag', metadata,
schema.Column('id', types.Integer,
schema.Sequence('entrytag_seq_id', optional=True), primary_key=True),
schema.Column('entryid', types.Integer, schema.ForeignKey('entries.id')),
schema.Column('tagid', types.Integer, schema.ForeignKey('tag.id')),
)
metadata.create_all(bind=engine, checkfirst=True)
# Insert test set of Twitter RSS feeds
stmt = RSSFeeds.insert()
stmt.execute(
{'url': 'http://twitter.com/statuses/user_timeline/14908909.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/52903246.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/41902319.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/29950404.rss'},
{'url': 'http://twitter.com/statuses/user_timeline/35699859.rss'},
)
#These 3 lines for threading process (see HalOtis.com for example)
THREAD_LIMIT = 20
jobs = Queue.Queue(0)
rss_to_process = Queue.Queue(THREAD_LIMIT)
#connect to sqlite database and grab the 5 test RSS feeds
conn = engine.connect()
feeds = conn.execute('SELECT id, url FROM feeds').fetchall()
#This block contains all the parsing and DB insertion
def store_feed_items(id, items):
""" Takes a feed_id and a list of items and stores them in the DB """
for entry in items:
conn.execute('SELECT id from entries WHERE short_url=?', (entry.link,))
#note: entry.summary contains entire feed entry for Twitter,
#i.e., not separated into content, etc.
s = unicode(entry.summary)
test = s.split()
tinyurl2 = [i for i in test if i.startswith('http://')]
hashtags2 = [i for i in s.split() if i.startswith('#')]
content2 = ' '.join(i for i in s.split() if i not in tinyurl2+hashtags2)
content = unicode(content2)
tinyurl = unicode(tinyurl2)
hashtags = unicode (hashtags2)
print hashtags
date = strftime("%Y-%m-%d %H:%M:%S",entry.updated_parsed)
#Insert parsed feed data into entries table
#THIS IS WHERE DUPLICATES OCCUR
result = conn.execute(RSSEntries.insert(), {'feed_id': id, 'short_url': tinyurl,
'content': content, 'hashtags': hashtags, 'date': date})
entry_id = result.last_inserted_ids()[0]
#Look up tag identifiers and create any that don't exist:
tags = tag_table
tag_id_query = select([tags.c.tagname, tags.c.id], tags.c.tagname.in_(hashtags2))
tag_ids = dict(conn.execute(tag_id_query).fetchall())
for tag in hashtags2:
if tag not in tag_ids:
result = conn.execute(tags.insert(), {'tagname': tag})
tag_ids[tag] = result.last_inserted_ids()[0]
#insert data into entrytag table
if hashtags2: conn.execute(entrytag_table.insert(),
[{'entryid': entry_id, 'tagid': tag_ids[tag]} for tag in hashtags2])
#Rest of file completes the threading process
def thread():
while True:
try:
id, feed_url = jobs.get(False) # False = Don't wait
except Queue.Empty:
return
entries = feedparser.parse(feed_url).entries
rss_to_process.put((id, entries), True) # This will block if full
for info in feeds: # Queue them up
jobs.put([info['id'], info['url']])
for n in xrange(THREAD_LIMIT):
t = threading.Thread(target=thread)
t.start()
while threading.activeCount() > 1 or not rss_to_process.empty():
# That condition means we want to do this loop if there are threads
# running OR there's stuff to process
try:
id, entries = rss_to_process.get(False, 1) # Wait for up to a second
except Queue.Empty:
continue
store_feed_items(id, entries)
如果你提供了一個模式,這將有所幫助,所以我們不必從源代碼中推斷出它。 – Fragsworth 2009-10-01 19:54:09
謝謝 - 我會在上面添加一些內容。 – 2009-10-01 20:39:31