2010-01-12 64 views
1

我們發現HP的打印機驅動程序無法正確處理PlgBlt()適用於其許多打印機。測試2D變換矩陣是否正交

我們的意圖是自己處理任何正交旋轉,並且只讓打印機處理縮放和翻譯(它似乎正確處理)。

我有一個2D矩陣可供我使用,在代碼中我將把位圖「繪製」到打印機的DC中。

我在數學上很弱,我對矩陣數學足夠理解,用它來轉換2D或3D座標。但底層的數學對我來說是不透明的。

所以,我需要的是檢測一個給定的二維矩陣是否在其變換中是正交的(無論如何旋轉方面)。我想另外一個問這個問題的方法是:我如何從2D矩陣中取回旋轉矢量?如果我知道以弧度或度數表示的旋轉角度,我可以說是否正交(0,90,180,270)。

據推測,該代碼是在這個問題上通用的,但下面是我們使用的代碼的基礎知識,萬一幫助:

typedef double ThreeByThreeMatrix[3][3]; // 3x3 for an X, Y coordinate transformation matrix 

那麼,對於一個包裝它處理最明顯的操作:

class Simple2DTransform 
{ 
public: 

    //////////////////////////////////////////////////// 
    // Construction 
    //////////////////////////////////////////////////// 

    // we always begin life as an identity matrix (you can then apply scale, skew, etc.) 
    Simple2DTransform() 
    { 
     Reset(); 
    } 

    //////////////////////////////////////////////////// 
    // Operators 
    //////////////////////////////////////////////////// 

    bool operator == (const Simple2DTransform & rhs) const 
    { 
     return memcmp(m_matrix, rhs.m_matrix, sizeof(m_matrix)) == 0; 
    } 

    Simple2DTransform & operator *= (const Simple2DTransform & rhs) 
    { 
     return *this = GetCrossProduct(rhs); 
    } 

    //////////////////////////////////////////////////// 
    // Setup 
    //////////////////////////////////////////////////// 

    // reset to the identity matrix 
    Simple2DTransform & Reset() 
    { 
     memcpy(m_matrix, GetIdentityMatrix(), sizeof(m_matrix)); 
     return *this; 
    } 

    // combine with the specified translation 
    Simple2DTransform & Translate(double x_shift, double y_shift) 
    { 
     Simple2DTransform transform; 
     translate(x_shift, y_shift, transform.m_matrix); 
     return *this *= transform; 
    } 

    // combine with the specified operations (these are cumulative operations, so rotating twice by 1 degree gives a total of 2 degrees rotation) 
    Simple2DTransform & Rotate(double radians) 
    { 
     Simple2DTransform transform; 
     rotate(radians, transform.m_matrix); 
     return *this *= transform; 
    } 

    // apply a heterogeneous scale factor 
    Simple2DTransform & Scale(double x_scale, double y_scale) 
    { 
     Simple2DTransform transform; 
     scale(x_scale, y_scale, transform.m_matrix); 
     return *this *= transform; 
    } 

    // apply a homogeneous scale factor 
    Simple2DTransform & Scale(double scale) 
    { 
     return Scale(scale, scale); 
    } 

    // apply a skew 
    Simple2DTransform & Skew(double skew) 
    { 
     Simple2DTransform transform; 
     skew_y(skew, transform.m_matrix); 
     return *this *= transform; 
    } 

    //////////////////////////////////////////////////// 
    // Queries 
    //////////////////////////////////////////////////// 

    // return the cross product of this and the given matrix 
    Simple2DTransform GetCrossProduct(const Simple2DTransform & rhs) const 
    { 
     Simple2DTransform result; 
     GEMM(m_matrix, rhs.m_matrix, result.m_matrix); 
     return result; 
    } 

    // returns the inverse of ourselves 
    Simple2DTransform GetInverse() const 
    { 
     // note: invert mucks with both matrices, so we use a copy of ourselves for it 
     Simple2DTransform original(*this), inverse; 
     invert(original.m_matrix, inverse.m_matrix); 
     return inverse; 
    } 

    // derivative values 
    double GetCoefficient(int i, int j) const 
    { 
     return m_matrix[i][j]; 
    } 

    // return the cross product 
    double GetDeterminate() const 
    { 
     return m_matrix[0][0]*m_matrix[1][1] - m_matrix[0][1]*m_matrix[1][0]; 
    } 

    // returns the square root of the determinate (this ignores heterogeneous scaling factors) 
    double GetScale() const 
    { 
     return sqrt(abs(GetDeterminate())); 
    } 

    // returns true if there is a scale factor 
    bool IsStretched() const 
    { 
     return (abs(abs(m_matrix[0][0]) - abs(m_matrix[1][1])) > 1.0e-7 
      || abs(abs(m_matrix[0][1]) - abs(m_matrix[1][0])) > 1.0e-7); 
    } 

    // true if we're the identity matrix 
    bool IsIdentity() const 
    { 
     return memcmp(m_matrix, GetIdentityMatrix(), sizeof(m_matrix)) == 0; 
    } 

    // returns true if this represents the same transformation as the given subtable 
    bool IsSubtableEqual(const SUBTABLE * pSubTable) const 
    { 
     ASSERT(pSubTable); 
     if (abs(pSubTable->tran1 - m_matrix[0][0]) > 1.0e-7) 
      return false; 
     if (abs(pSubTable->tran2 - m_matrix[1][0]) > 1.0e-7) 
      return false; 
     if (abs(pSubTable->tran3 - m_matrix[0][1]) > 1.0e-7) 
      return false; 
     if (abs(pSubTable->tran4 - m_matrix[1][1]) > 1.0e-7) 
      return false; 
     return true; 
    } 

    //////////////////////////////////////////////////// 
    // Application/Execution 
    //////////////////////////////////////////////////// 

    void Transform(const SimplePoint & point, SimplePoint & newpoint) const 
    { 
     newpoint.x = point.x * m_matrix[0][0] + point.y * m_matrix[1][0] + m_matrix[2][0]; 
     newpoint.y = point.x * m_matrix[0][1] + point.y * m_matrix[1][1] + m_matrix[2][1]; 
    } 

    void Transform(SimplePoint & point) const 
    { 
     SimplePoint newpoint; 
     Transform(point, newpoint); 
     point = newpoint; 
    } 

    void Transform(const SimpleRect & rect, SimpleRect & newrect) const 
    { 
     newrect.minX = rect.minX * m_matrix[0][0] + rect.minY * m_matrix[1][0] + m_matrix[2][0]; 
     newrect.minY = rect.minX * m_matrix[0][1] + rect.minY * m_matrix[1][1] + m_matrix[2][1]; 
     newrect.maxX = rect.maxX * m_matrix[0][0] + rect.maxY * m_matrix[1][0] + m_matrix[2][0]; 
     newrect.maxY = rect.maxX * m_matrix[0][1] + rect.maxY * m_matrix[1][1] + m_matrix[2][1]; 
    } 

    void Transform(SimpleRect & rect) const 
    { 
     SimpleRect newrect; 
     Transform(rect, newrect); 
     rect = newrect; 
    } 

    void Transform(CPoint & point) const 
    { 
     SimplePoint newpoint(point); 
     Transform(newpoint); 
     point.x = (int)(newpoint.x > 0.0 ? newpoint.x + 0.5 : newpoint.x - 0.5); 
     point.y = (int)(newpoint.y > 0.0 ? newpoint.y + 0.5 : newpoint.y - 0.5); 
    } 

    void Transform(SimplePoint point, CPoint & transformed) const 
    { 
     Transform(point); 
     transformed.x = (int)(point.x > 0.0 ? point.x + 0.5 : point.x - 0.5); 
     transformed.y = (int)(point.y > 0.0 ? point.y + 0.5 : point.y - 0.5); 
    } 

    void Transform(CPoint point, SimplePoint & transformed) const 
    { 
     transformed = point; 
     Transform(transformed); 
    } 

    void Transform(double dx, double dy, double & x, double & y) const 
    { 
     SimplePoint point(dx, dy); 
     Transform(point); 
     x = point.x; 
     y = point.y; 
    } 

    void Transform(double & x, double & y) const 
    { 
     SimplePoint point(x, y); 
     Transform(point); 
     x = point.x; 
     y = point.y; 
    } 

    SimplePoint GetTransformed(SimplePoint point) const 
    { 
     Transform(point); 
     return point; 
    } 

    CPoint GetTransformed(CPoint point) const 
    { 
     Transform(point); 
     return point; 
    } 

    SimpleRect GetTransformed(const CRect & rect) const 
    { 
     return SimpleRect(GetTransformed(SimplePoint(rect.left, rect.bottom)), GetTransformed(SimplePoint(rect.right, rect.top))); 
    } 

    SimpleRect GetTransformed(double x1, double y1, double x2, double y2) const 
    { 
     return SimpleRect(GetTransformed(SimplePoint(x1, y1)), GetTransformed(SimplePoint(x2, y2))); 
    } 

    double GetTransformedX(double x, double y) const 
    { 
     return GetTransformed(SimplePoint(x, y)).x; 
    } 

    double GetTransformedY(double x, double y) const 
    { 
     return GetTransformed(SimplePoint(x, y)).y; 
    } 

    double GetTransformedX(int x, int y) const 
    { 
     return GetTransformed(SimplePoint(x, y)).x; 
    } 

    double GetTransformedY(int x, int y) const 
    { 
     return GetTransformed(SimplePoint(x, y)).y; 
    } 

    double GetTransformedX(const SimplePoint & point) const 
    { 
     return GetTransformed(point).x; 
    } 

    double GetTransformedY(const SimplePoint & point) const 
    { 
     return GetTransformed(point).y; 
    } 

    int GetTransformedIntX(double x, double y) const 
    { 
     CPoint point; 
     Transform(SimplePoint(x, y), point); 
     return point.x; 
    } 

    int GetTransformedIntY(double x, double y) const 
    { 
     CPoint point; 
     Transform(SimplePoint(x, y), point); 
     return point.y; 
    } 

    int GetTransformedIntX(const SimplePoint & point) const 
    { 
     CPoint pt; 
     Transform(point, pt); 
     return pt.x; 
    } 

    int GetTransformedIntY(const SimplePoint & point) const 
    { 
     CPoint pt; 
     Transform(point, pt); 
     return pt.y; 
    } 

protected: 
    //////////////////////////////////////////////////// 
    // Static Class Operations 
    //////////////////////////////////////////////////// 

    static const ThreeByThreeMatrix & GetIdentityMatrix(); 

    //////////////////////////////////////////////////// 
    // Instance Variables 
    //////////////////////////////////////////////////// 

    ThreeByThreeMatrix m_matrix; 
}; 
+0

所有旋轉矩陣是正交的...也許你的意思是,旋轉90˚的倍數? – James 2010-01-12 17:08:21

回答

2

設A =(0,0),B =(1,0)。通過矩陣變換得到A'和B'。測量向量B' - A'的角度。這應該給你的角度。

爲了測量向量的角度,您可以用ATAN2(B'.y - A'.y,B'.x - A'.x)

+0

+ 1用於實現Mordachai實際上通過正交表示的意思;) – James 2010-01-12 17:17:08

+0

哈哈 - 抱歉如果這是令人困惑的。 ;) – Mordachai 2010-01-12 17:18:14