Apache Apex看起來像Apache Storm。Apache Apex如何與Apache Storm不同?
- 用戶在兩個平臺上構建應用程序/拓撲結構爲定向非循環圖(DAG)。 Apex使用操作員/流,Storm使用噴嘴/流/螺栓。
- 它們都是實時處理數據,而不是批處理。
- 似乎都具有高吞吐量&低延遲
所以,一目瞭然,看起來都差不多,我不太得到的差異。有人能解釋一下關鍵的區別嗎?換句話說,我應該什麼時候使用一個而不是另一個?
Apache Apex看起來像Apache Storm。Apache Apex如何與Apache Storm不同?
所以,一目瞭然,看起來都差不多,我不太得到的差異。有人能解釋一下關鍵的區別嗎?換句話說,我應該什麼時候使用一個而不是另一個?
體系結構有着根本的不同,它使得每個平臺在延遲,縮放和狀態管理方面都有很大的不同。
在最基層,
您可以在以下博客中瞭解更多不同之處,其中還包括其他主流處理平臺。
https://databaseline.wordpress.com/2016/03/12/an-overview-of-apache-streaming-technologies/
架構和功能
+-------------------+---------------------------+---------------------+
| | Storm | Apex |
+-------------------+---------------------------+---------------------+
| Model | Native Streaming | Native Streaming |
| | Micro batch (Trident | |
+-------------------+---------------------------+---------------------+
| Language | Java. | Java (Scala) |
| | Ability to use non | |
| | JVM languages support | |
+-------------------+---------------------------+---------------------+
| API | Compositional | Compositional (DAG) |
| | Declarative (Trident) | Declarative |
| | Limited SQL | |
| | support (Trident) | |
+-------------------+---------------------------+---------------------+
| Locality | Data Locality | Advance Processing |
+-------------------+---------------------------+---------------------+
| Latency | Low | Very Low |
| | High (Trident) | |
+-------------------+---------------------------+---------------------+
| Throughput | Limited in Ack mode | Very high |
+-------------------+---------------------------+---------------------+
| Scalibility | Limited due to Ack | Horizontal |
+-------------------+---------------------------+---------------------+
| Partitioning | Standard | Advance |
| | Set parallelism at work, | Parallel pipes, |
| | executor and task level | unifiers |
+-------------------+---------------------------+---------------------+
| Connector Library | Limited (certification) | Rich library of |
| | | connectors in |
| | | Apex Malhar |
+-------------------+---------------------------+---------------------+
操作性
+------------+--------------------------+---------------------+
| | Storm | Apex |
+------------+--------------------------+---------------------+
| State | External store | Checkpointing |
| Management | Limited checkpointing | Local checkpointing |
| | Difficult to exploit | |
| | local state | |
+------------+--------------------------+---------------------+
| Recovery | Cumbersome API to | Incremental |
| | store and retrieve state | (buffer server) |
| | Require user code | |
+------------+--------------------------+---------------------+
| Processing | At least once | |
| Semantic | Exactly once require | At least once |
| | user code and affect | End to end |
| | latency | |
| | | exactly once |
+------------+--------------------------+---------------------+
| Back | Watermark on queue | Automatic |
| Pressure | size for spout and bolt | Buffer server |
| | Does not scale | memory and disk |
+------------+--------------------------+---------------------+
| Elasticity | Through CLI only | Yes w/ full user |
| | | control |
+------------+--------------------------+---------------------+
| Dynamic | No | Yes |
| topology | | |
+------------+--------------------------+---------------------+
| Security | Kerberos | Kerberos, RBAC, |
| | | LDAP |
+------------+--------------------------+---------------------+
| Multi | Mesos, RAS - memory, | YARN |
| Tenancy | CPU, YARN | full isolation |
+------------+--------------------------+---------------------+
| DevOps | REST API | REST API |
| Tools | Basic UI | DataTorrent RTS |
+------------+--------------------------+---------------------+
來源: 研討會:阿帕奇頂點(下一代的Hadoop)與風暴 - 比較和遷移綱要https://www.youtube.com/watch?v=sPjyo2HfD_I
添加Apache Flink和Apache Beam,所有DAG處理器 – user3613754
還請添加用例,我更喜歡哪種用例適合每種用例。 – ChikuMiku