我會後老師的解決方案:
% Løsning oblig 3, INF121, Høsten 2009.
% Skrevet av: Dag Hovland
% Opphavsrett: Universitetet i Bergen
% Lisensiert under GPL v3, www.gnu.org. Etter tillatelse fra administrasjonen.
% Oppgave 1
alignment([],[],[]).
alignment([X|Xs],[X|Ys],[X|A]) :- alignment(Xs,Ys,A).
alignment(Xs,[_|Ys],A) :- alignment(Xs,Ys,A).
alignment([_|Xs],Ys,A) :- alignment(Xs,Ys,A).
maximum([X|Xs],Max) :- maximum(Xs,X,Max).
maximum([],(X,_),X).
maximum([X|Xs],(_,LM),MX) :- length(X,LX), LX > LM, !, maximum(Xs, (X,LX), MX).
maximum([X|Xs],(M,LM),MX) :- length(X,LX), LX < LM, !, maximum(Xs, (M,LM), MX).
% Pga. kuttene over vet vi at dersom tilfellene under brukes, så er
% X akkurat like lang som lengste sett så langt
maximum([X|Xs],_,MX) :- length(X,LX), maximum(Xs, (X,LX), MX).
maximum([_|Xs],M,MX) :- maximum(Xs, M, MX).
maxAlignment(Xs,Ys,A) :- findall((N,A),alignment(Xs,Ys,N,A),All),!,
maximum(All,(_,A)).
% Oppgave 2
path(S,S,_).
path(S,End,Edges) :- select((S,Next),Edges,EdgesRest),
path(Next, End, EdgesRest).
% select er innebygd. Skriv "listing(select) for å se definisjonen:
%select(A, [A|B], B).
%select(B, [A|C], [A|D]) :-
% select(B, C, D).
% polish(I,V,S) evaluates expression I to value V with stack S.
polish([],V,[V]).
polish(I,V,S) :- append(" ",I1,I),polish(I1,V,S).
polish([NC|I],V,S) :- name(N,[NC]),integer(N),polish(I,V,[N|S]).
polish(I,V,[F1,F2|S]) :- append("+",I1,I),Sum is F1+F2,polish(I1,V,[Sum|S]).
polish(I,V,[F1,F2|S]) :- append("-",I1,I),Sum is F2-F1,polish(I1,V,[Sum|S]).
polish(I,V,[F1,F2|S]) :- append("/",I1,I),Sum is F2/F1,polish(I1,V,[Sum|S]).
polish(I,V,[F1,F2|S]) :- append("*",I1,I),Sum is F1*F2,polish(I1,V,[Sum|S]).
evalPost(S,E) :- polish(S,E,[]).
我張貼整個文件,因爲它是。下面顯示它是如何工作的:
?- evalPost("1 2 3 * +", V).
V = 7
?- evalPost("1 3 2 * 2 + +",V).
V = 9
?- evalPost("1 2 3 * 4 + +",V).
V = 11
?- evalPost("1 2 3 * 4 + -",V).
V = -9
?- evalPost("4 2/1 +",V).
V = 3
看起來非常接近逆波蘭表示法 – Simon 2009-11-11 11:27:38
Solved.Solved.Solved.Solved。 – Algific 2009-11-12 15:32:50
小心張貼解決方案? – 2010-06-30 06:44:23