我必須在SODEs系統上運行一些模擬。因爲我需要使用隨機圖,所以我認爲使用python生成圖的相鄰矩陣然後用C生成模擬是一個好主意。所以我轉向了cython。用於改進Cython代碼的高效矩陣向量結構
爲了儘可能提高速度,我編寫了我的代碼,提示cython documentation。但知道我真的不知道我的代碼是否好。我也運行cython toast.pyx -a
,但我不明白這些問題。
- 在cython中用於向量和矩陣的最佳結構是什麼?我應該如何在我的代碼上使用
np.array
或double
來定義例如bruit
?請注意,我將比較矩陣(0或1)的元素以便進行總和或不是。結果將是一個矩陣NxT,其中N是系統的維數,T是我想用於模擬的時間。 - 我在哪裏可以找到
double[:]
的文檔? - 如何在函數的輸入中聲明向量和矩陣(下面的G,W和X)?我怎麼能聲明一個向量
double
?
不過我讓我的代碼聊我:
from __future__ import division
import scipy.stats as stat
import numpy as np
import networkx as net
#C part
from libc.math cimport sin
from libc.math cimport sqrt
#cimport cython
cimport numpy as np
cimport cython
cdef double tau = 2*np.pi #http://tauday.com/
#graph
def graph(int N, double p):
"""
It generates an adjacency matrix for a Erdos-Renyi graph G{N,p} (by default not directed).
Note that this is an O(n^2) algorithm and it gives an array, not a (sparse) matrix.
Remark: fast_gnp_random_graph(n, p, seed=None, directed=False) is O(n+m), where m is the expected number of edges m=p*n*(n-1)/2.
Arguments:
N : number of edges
p : probability for edge creation
"""
G=net.gnp_random_graph(N, p, seed=None, directed=False)
G=net.adjacency_matrix(G, nodelist=None, weight='weight')
G=G.toarray()
return G
@cython.boundscheck(False)
@cython.wraparound(False)
#simulations
def simul(int N, double H, G, np.ndarray W, np.ndarray X, double d, double eps, double T, double dt, int kt_max):
"""
For details view the general description of the package.
Argumets:
N : population size
H : coupling strenght complete case
G : adjiacenty matrix
W : disorder
X : initial condition
d : diffusion term
eps : 0 for the reversibily case, 1 for the non-rev case
T : time of the simulation
dt : increment time steps
kt_max = (int) T/dt
"""
cdef int kt
#kt_max = T/dt to check
cdef np.ndarray xt = np.zeros([N,kt_max], dtype=np.float64)
cdef double S1 = 0.0
cdef double Stilde1 = 0.0
cdef double xtmp, xtilde, x_diff, xi
cdef np.ndarray bruit = d*sqrt(dt)*stat.norm.rvs(N)
cdef int i, j, k
for i in range(N): #setting initial conditions
xt[i][0]=X[i]
for kt in range(kt_max-1):
for i in range(N):
S1 = 0.0
Stilde1= 0.0
xi = xt[i][kt]
for j in range(N): #computation of the sum with the adjiacenty matrix
if G[i][j]==1:
x_diff = xt[j][kt] - xi
S2 = S2 + sin(x_diff)
xtilde = xi + (eps*(W[i]) + (H/N)*S1)*dt + bruit[i]
for j in range(N):
if G[i][j]==1:
x_diff = xt[j][kt] - xtilde
Stilde2 = Stilde2 + sin(x_diff)
#computation of xt[i]
xtmp = xi + (eps*(W[i]) + (H/N)*(S1+Stilde1)*0.5)*dt + bruit
xt[i][kt+1] = xtmp%tau
return xt
非常感謝您!
更新
我改變了變量定義的順序,對np.array
和double
向xt[i][j]
和xt[i,j]
的矩陣long long
。代碼現在非常快,HTML文件中的黃色部分就在聲明的周圍。謝謝!
from __future__ import division
import scipy.stats as stat
import numpy as np
import networkx as net
#C part
from libc.math cimport sin
from libc.math cimport sqrt
#cimport cython
cimport numpy as np
cimport cython
cdef double tau = 2*np.pi #http://tauday.com/
#graph
def graph(int N, double p):
"""
It generates an adjacency matrix for a Erdos-Renyi graph G{N,p} (by default not directed).
Note that this is an O(n^2) algorithm and it gives an array, not a (sparse) matrix.
Remark: fast_gnp_random_graph(n, p, seed=None, directed=False) is O(n+m), where m is the expected number of edges m=p*n*(n-1)/2.
Arguments:
N : number of edges
p : probability for edge creation
"""
G=net.gnp_random_graph(N, p, seed=None, directed=False)
G=net.adjacency_matrix(G, nodelist=None, weight='weight')
G=G.toarray()
return G
@cython.boundscheck(False)
@cython.wraparound(False)
#simulations
def simul(int N, double H, long long [:, ::1] G, double[:] W, double[:] X, double d, double eps, double T, double dt, int kt_max):
"""
For details view the general description of the package.
Argumets:
N : population size
H : coupling strenght complete case
G : adjiacenty matrix
W : disorder
X : initial condition
d : diffusion term
eps : 0 for the reversibily case, 1 for the non-rev case
T : time of the simulation
dt : increment time steps
kt_max = (int) T/dt
"""
cdef int kt
#kt_max = T/dt to check
cdef double S1 = 0.0
cdef double Stilde1 = 0.0
cdef double xtmp, xtilde, x_diff
cdef double[:] bruit = d*sqrt(dt)*np.random.standard_normal(N)
cdef double[:, ::1] xt = np.zeros((N, kt_max), dtype=np.float64)
cdef double[:, ::1] yt = np.zeros((N, kt_max), dtype=np.float64)
cdef int i, j, k
for i in range(N): #setting initial conditions
xt[i,0]=X[i]
for kt in range(kt_max-1):
for i in range(N):
S1 = 0.0
Stilde1= 0.0
for j in range(N): #computation of the sum with the adjiacenty matrix
if G[i,j]==1:
x_diff = xt[j,kt] - xt[i,kt]
S1 = S1 + sin(x_diff)
xtilde = xt[i,kt] + (eps*(W[i]) + (H/N)*S1)*dt + bruit[i]
for j in range(N):
if G[i,j]==1:
x_diff = xt[j,kt] - xtilde
Stilde1 = Stilde1 + sin(x_diff)
#computation of xt[i]
xtmp = xt[i,kt] + (eps*(W[i]) + (H/N)*(S1+Stilde1)*0.5)*dt + bruit[i]
xt[i,kt+1] = xtmp%tau
return xt
http://cython.readthedocs.io/en/latest/src/userguide/memoryviews.html是一個很好的說明'memoryviews'及其與其他數組(c,numpy等)的兼容性。 – hpaulj