0
我從here閱讀建議始終使用tf.get_variable(...)
雖然這似乎有點麻煩,當我試圖實現一個網絡。我正確使用tf.get_variable()嗎?
例如:
def create_weights(shape, name = 'weights',\
initializer = tf.random_normal_initializer(0, 0.1)):
weights = tf.get_variable(name, shape, initializer = initializer)
print("weights created named: {}".format(weights.name))
return(weights)
def LeNet(in_units, keep_prob):
# define the network
with tf.variable_scope("conv1"):
conv1 = conv(in_units, create_weights([5, 5, 3, 32]), create_bias([32]))
pool1 = maxpool(conv1)
with tf.variable_scope("conv2"):
conv2 = conv(pool1, create_weights([5, 5, 32, 64]), create_bias([64]))
pool2 = maxpool(conv2)
# reshape the network to feed it into the fully connected layers
with tf.variable_scope("flatten"):
flatten = tf.reshape(pool2, [-1, 1600])
flatten = dropout(flatten, keep_prob)
with tf.variable_scope("fc1"):
fc1 = fc(flatten, create_weights([1600, 120]), biases = create_bias([120]))
fc1 = dropout(fc1, keep_prob)
with tf.variable_scope("fc2"):
fc2 = fc(fc1, create_weights([120, 84]), biases = create_bias([84]))
with tf.variable_scope("logits"):
logits = fc(fc2, create_weights([84, 43]), biases = create_bias([43]))
return(logits)
我不得不使用with tf_variable_scope(...)
每一次我打電話create_weights
,而且,說如果我想改變conv1
變量的權重[7, 7, 3, 32]
代替[5, 5, 3, 32]
我將不得不重新啓動內核作爲變量已經存在。另一方面,如果我使用tf.Variable(...)
我不會有任何這些問題。
我使用tf.variable_scope(...)
不正確?