1/n
是兩個整數操作數的表達式。所以執行整數除法。對於n
等於1
,此評估爲1
。對於大於1
的所有n
的值,該整數除法評估爲0
。
您想要浮點除法,所以必須至少使其中一個操作數成爲浮點值。例如
1.0/n
您還需要申報x1
是一個浮點值,並使用%f
。嘗試使用整數變量來近似e
並不好。
我想你會在某個時候需要實現一個循環終止條件。就目前而言,你的循環是毫無意義的,因爲循環內部使用的值都不會改變。
這裏有一個程序,也許是在朝着正確的方向:
#include<stdio.h>
#include<math.h>
int main(void)
{
for (int n = 1; n <= 1000; n++)
{
double e = pow(1 + 1.0/n, n);
printf("n=%d, approximation to e=%.16f\n", n, e);
}
printf("true value of e=%.16f\n", exp(1.0));
return 0;
}
輸出
n=1, approximation to e=2.0000000000000000
n=2, approximation to e=2.2500000000000000
n=3, approximation to e=2.3703703703703698
n=4, approximation to e=2.4414062500000000
n=5, approximation to e=2.4883199999999994
n=6, approximation to e=2.5216263717421135
n=7, approximation to e=2.5464996970407121
n=8, approximation to e=2.5657845139503479
n=9, approximation to e=2.5811747917131984
n=10, approximation to e=2.5937424601000023
..........
n=991, approximation to e=2.7169116115768883
n=992, approximation to e=2.7169129915688766
n=993, approximation to e=2.7169143687840753
n=994, approximation to e=2.7169157432307069
n=995, approximation to e=2.7169171149169880
n=996, approximation to e=2.7169184838514693
n=997, approximation to e=2.7169198500421694
n=998, approximation to e=2.7169212134981109
n=999, approximation to e=2.7169225742266474
n=1000, approximation to e=2.7169239322355936
true value of e=2.7182818284590451
這是相當有趣的是收斂的速度是真窮。估計的準確性永遠不會好,因爲對於大型n
,您將在1.0 + 1.0/n
中遭受四捨五入。這絕對不是一種有效的方式來近似e
。
這個版本,使用infinite sum,收斂得更快:
#include<stdio.h>
#include<math.h>
int main(void)
{
double e = 0.0;
double increment = 1.0;
for (int n = 0; n <= 20; n++)
{
e += increment;
increment /= (n+1);
printf("n=%d, approximation to e=%.16f\n", n, e);
}
printf("true value of e=%.16f\n", exp(1.0));
return 0;
}
輸出
n=0, approximation to e=1.0000000000000000
n=1, approximation to e=2.0000000000000000
n=2, approximation to e=2.5000000000000000
n=3, approximation to e=2.6666666666666665
n=4, approximation to e=2.7083333333333330
n=5, approximation to e=2.7166666666666663
n=6, approximation to e=2.7180555555555554
n=7, approximation to e=2.7182539682539684
n=8, approximation to e=2.7182787698412700
n=9, approximation to e=2.7182815255731922
n=10, approximation to e=2.7182818011463845
n=11, approximation to e=2.7182818261984929
n=12, approximation to e=2.7182818282861687
n=13, approximation to e=2.7182818284467594
n=14, approximation to e=2.7182818284582302
n=15, approximation to e=2.7182818284589949
n=16, approximation to e=2.7182818284590429
n=17, approximation to e=2.7182818284590455
n=18, approximation to e=2.7182818284590455
n=19, approximation to e=2.7182818284590455
n=20, approximation to e=2.7182818284590455
true value of e=2.7182818284590451
你有沒有條件的無限循環,而且絕不使用循環變量'我'在循環內部,而不是你一遍又一遍地重複同樣的'n'。 – Arkku
...和無盡循環結束後,暫停。只是要確定。 – Potatoswatter