這裏做的更囉嗦的方式(這是我做之前,我知道了「分區」一詞,這使我做了谷歌搜索):
def magic_chunker (remainder, chunkSet, prevChunkSet, chunkSets):
if remainder > 0:
if prevChunkSet and (len(prevChunkSet) > len(chunkSet)): # counting down from previous
# make a chunk that is one less than relevant one in the prevChunkSet
position = len(chunkSet)
chunk = prevChunkSet[position] - 1
prevChunkSet = [] # clear prevChunkSet, no longer need to reference it
else: # begins a new countdown;
if chunkSet and (remainder > chunkSet[-1]): # no need to do iterations any greater than last chunk in this set
chunk = chunkSet[-1]
else: # i.e. remainder is less than or equal to last chunk in this set
chunk = remainder #else use the whole remainder for this chunk
chunkSet.append(chunk)
remainder -= chunk
magic_chunker(remainder, chunkSet, prevChunkSet, chunkSets)
else: #i.e. remainder==0
chunkSets.append(list(chunkSet)) #save completed partition
prevChunkSet = list(chunkSet)
if chunkSet[-1] > 1: # if the finalchunk was > 1, do further recursion
remainder = chunkSet.pop() #remove last member, and use it as remainder
magic_chunker(remainder, chunkSet, prevChunkSet, chunkSets)
else: # last chunk is 1
if chunkSet[0]==1: #the partition started with 1, we know we're finished
return chunkSets
else: #i.e. still more chunking to go
# clear back to last chunk greater than 1
while chunkSet[-1]==1:
remainder += chunkSet.pop()
remainder += chunkSet.pop()
magic_chunker(remainder, chunkSet, prevChunkSet, chunkSets)
partitions = []
magic_chunker(10, [], [], partitions)
print partitions
>> [[10], [9, 1], [8, 2], [8, 1, 1], [7, 3], [7, 2, 1], [7, 1, 1, 1], [6, 4], [6, 3, 1], [6, 2, 2], [6, 2, 1, 1], [6, 1, 1, 1, 1], [5, 5], [5, 4, 1], [5, 3, 2], [5, 3, 1, 1], [5, 2, 2, 1], [5, 2, 1, 1, 1], [5, 1, 1, 1, 1, 1], [4, 4, 2], [4, 4, 1, 1], [4, 3, 3], [4, 3, 2, 1], [4, 3, 1, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1], [4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [3, 3, 3, 1], [3, 3, 2, 2], [3, 3, 2, 1, 1], [3, 3, 1, 1, 1, 1], [3, 2, 2, 2, 1], [3, 2, 2, 1, 1, 1], [3, 2, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
只是好奇:是一個理論問題(這是好的)還是它有實際用途? – PhiLho 2008-12-30 17:02:21
它確實對我有用。我需要生成一個數字N的所有分區。每個分區對應不同的分佈,因此我試圖最大化一個不同的「覆蓋」值。 – 2008-12-30 17:13:09
如果你只是在尋找分區的數量而不是特定的公式,那麼就有一個封閉的解決方案。 – AlexQueue 2011-09-08 15:14:02