我正在使用Accelerate框架中的vDSP在來自網格網格的二維數組中執行fft2d操作。vDSP FFT2d Swift錯誤結果的想象部分
問題是我得到一個虛數部分的數組0與Python中使用pylab.fft2的相同操作不匹配。
如果我增加數組的大小,結果不是零,但不匹配,所以我做的不好。
有人能幫我一個忙嗎?這是我的第一個堆棧溢出問題,但現在我陷入了兩個星期。
這是網格(4×8在這個例子中)
[
[1.80485138784544e-35, 2.61027906966774e-23, 1.26641655490943e-14, 2.06115362243857e-09, 1.1253517471926e-07, 2.06115362243857e-09, 1.26641655490943e-14, 2.61027906966774e-23],
[2.93748211171084e-30, 4.24835425529162e-18, 2.06115362243857e-09, 0.000335462627902512, 0.0183156388887342, 0.000335462627902512, 2.06115362243857e-09, 4.24835425529162e-18],
[1.60381089054866e-28, 2.31952283024359e-16, 1.1253517471926e-07, 0.0183156388887342, 1.0, 0.0183156388887342, 1.1253517471926e-07, 2.31952283024359e-16],
[2.93748211171084e-30, 4.24835425529162e-18, 2.06115362243857e-09, 0.000335462627902512, 0.0183156388887342, 0.000335462627902512, 2.06115362243857e-09, 4.24835425529162e-18]
]
這裏是FFT2功能:
func fft2(arr: [[Complex<Double>]]) -> [[Complex<Double>]] {
let nRows = arr.count
let nCols = arr[0].count
let N = nRows * nCols
let radix = FFTRadix(FFT_RADIX2)
let pass = vDSP_Length(Int(log2(Double(N))))
// Create FFTSetup
let setup = vDSP_create_fftsetupD(pass, radix)
// Direction
let dir = FFTDirection(FFT_FORWARD)
// Get real and imag doubles from the [Complex]
// (all imag parts are 0.0 on this example)
let (real, imag) = complex2DArrayToDouble(arr)
// Pack 2d arrays as 1d (function bellow)
var realArray = pack2dArray(real, rows: nRows, cols: nCols)
var imagArray = pack2dArray(imag, rows: nRows, cols: nCols)
// Create the split complex with the packed arrays
var splitComplex = DSPDoubleSplitComplex(
realp: &realArray,
imagp: &imagArray)
let log2n0c = vDSP_Length(Int(log2(Double(nCols))))
let log2n1r = vDSP_Length(Int(log2(Double(nRows))))
let rowStride = vDSP_Stride(nRows)
let colStride = vDSP_Stride(1) // Use all cols
// Perform the fft2d
vDSP_fft2d_zipD(setup, &splitComplex, rowStride, colStride, log2n0c, log2n1r, dir)
// Destroy setup
vDSP_destroy_fftsetupD(setup)
// Pack the 1d arrays on 2d arrays again
let resultReal = unpack2dArray(realArray, rows: nRows, cols: nCols)
let resultImag = unpack2dArray(imagArray, rows: nRows, cols: nCols)
// Ignore this...
return complexFrom2DArray([[Double]](), imag: [[Double]]())
}
最後這裏是我使用的包並解壓陣列功能從/到2d到1d
func pack2dArray(arr: [[Double]], rows: Int, cols: Int) -> [Double] {
var resultArray = zeros(rows * cols)
for Iy in 0...cols-1 {
for Ix in 0...rows-1 {
let index = Iy * rows + Ix
resultArray[index] = arr[Ix][Iy]
}
}
return resultArray
}
func unpack2dArray(arr: [Double], rows: Int, cols: Int) -> [[Double]] {
var resultArray = [[Double]](count: rows, repeatedValue: zeros(cols))
for Iy in 0...cols-1 {
for Ix in 0...rows-1 {
let index = Iy * rows + Ix
resultArray[Ix][Iy] = arr[index]
}
}
return resultArray
}
我將不勝感激任何有關此信息,我可以改變這一點到C或Objective-C如果最容易讓它像python一樣工作。
斯威夫特結果:
[
[(1.07460475603902+0.0.i), (-1.06348244974363+0.0.i), (1.03663115699765+0.0.i), (-1.00978033088166+0.0.i), (0.998658491216246+0.0.i), (-1.00978033088166+0.0.i), (1.03663115699765+0.0.i), (-1.06348244974363+0.0.i)],
[(-1.03663138619031+0.0.i), (1.02590210946989+0.0.i), (-0.999999662394501+0.0.i), (0.974097665459761+0.0.i), (-0.963368838879988+0.0.i), (0.974097665459761+0.0.i), (-0.999999662394501+0.0.i), (1.02590210946989+0.0.i)],
[(0.998658482971633+0.0.i), (-0.988322230996495+0.0.i), (0.963368617931946+0.0.i), (-0.938415438518917+0.0.i), (0.928079620195301+0.0.i), (-0.938415438518917+0.0.i), (0.963368617931946+0.0.i), (-0.988322230996495+0.0.i)],
[(-1.03663138619031+0.0.i), (1.02590210946989+0.0.i), (-0.999999662394501+0.0.i), (0.974097665459761+0.0.i), (-0.963368838879988+0.0.i), (0.974097665459761+0.0.i), (-0.999999662394501+0.0.i), (1.02590210946989+0.0.i)]
]
Python的結果:
[
[ 1.07460476 +0.00000000e+00j, -1.06348245 +1.98409020e-17j, 1.03663116 +0.00000000e+00j -1.00978033 -1.97866921e-17j, 0.99865849 +0.00000000e+00j -1.00978033 -1.98409020e-17j, 1.03663116 +0.00000000e+00j -1.06348245 +1.97866921e-17j]
[-1.03663139 +0.00000000e+00j, 1.02590211 -1.90819560e-17j, -0.99999966 +0.00000000e+00j, 0.97409767 +1.90819558e-17j, -0.96336884 +0.00000000e+00j, 0.97409767 +1.90819560e-17j, -0.99999966 +0.00000000e+00j, 1.02590211 -1.90819558e-17j]
[ 0.99865848 +0.00000000e+00j, 0.98832223 +1.83230190e-17j, 0.96336862 +0.00000000e+00j, 0.93841544 -1.83772293e-17j, 0.92807962 +0.00000000e+00j, 0.93841544 -1.83230190e-17j, 0.96336862 +0.00000000e+00j, 0.98832223 +1.83772293e-17j]
[-1.03663139 +0.00000000e+00j, 1.02590211 -1.90819560e-17j, -0.99999966 +0.00000000e+00j, 0.97409767 +1.90819558e-17j, -0.96336884 +0.00000000e+00j, 0.97409767 +1.90819560e-17j, -0.99999966 +0.00000000e+00j, 1.02590211 -1.90819558e-17j]
]
的問候和感謝這麼多提前!
編輯1
這裏是關於相同的代碼℃的版本: http://pastebin.com/C9RPgu68
這裏是Python代碼: http://pastebin.com/rr4e6rku
您是否在討論像第二項中的'0.0.i'(Swift)與'+ 1.98409020e-17j'(Python)的區別?這似乎在64位浮點數的精度範圍內。不同的輸出甚至可能是由Swift使用定點表示和Python使用科學表示造成的。 –
我想在此之前,但如果我做一個4x32數組例如我得到虛部的值,但他們是不正確的(不是0,但不正確)。無論如何,非常感謝我的信息,我會再次檢查。 –
也許我需要使用vDSP_fft2d_zripD而不是vDSP_fft2d_zipD,因爲輸入數據是真實的,而不是複雜的格式,但我有問題需要爲vDSP正確打包。 –