我決定通過CLRS Introduction to Algorithms文本工作,並挑選了整齊的問題here。用於解決動態規劃算法的習慣Clojure
我解決了這個問題,並提出了一個可以直接在Python中實現的迫切解決方案,但在Clojure中稍微不那麼簡單。
我完全難以將我的解決方案中的計算矩陣函數翻譯成慣用的Clojure。有什麼建議麼?下面是計算矩陣功能的僞代碼:
// n is the dimension of the square matrix.
// c is the matrix.
function compute-matrix(c, n):
// Traverse through the left-lower triangular matrix and calculate values.
for i=2 to n:
for j=i to n:
// This is our minimum value sentinal.
// If we encounter a value lower than this, then we store the new
// lowest value.
optimal-cost = INF
// Index in previous column representing the row we want to point to.
// Whenever we update 't' with a new lowest value, we need to change
// 'row' to point to the row we're getting that value from.
row = 0
// This iterates through each entry in the previous column.
// Note: we have a lower triangular matrix, meaning data only
// exists in the left-lower half.
// We are on column 'i', but because we're in a left-lower triangular
// matrix, data doesn't start until row (i-1).
//
// Similarly, we go to (j-1) because we can't choose a configuration
// where the previous column ended on a word who's index is larger
// than the word index this column starts on - the case which occurs
// when we go for k=(i-1) to greater than (j-1)
for k=(i-1) to (j-1):
// When 'j' is equal to 'n', we are at the last cell and we
// don't care how much whitespace we have. Just take the total
// from the previous cell.
// Note: if 'j' < 'n', then compute normally.
if (j < n):
z = cost(k + 1, j) + c[i-1, k]
else:
z = c[i-1, k]
if z < optimal-cost:
row = k
optimal-cost = z
c[i,j] = optimal-cost
c[i,j].row = row
此外,我非常感謝我的Clojure源的其餘部分的反饋,特別是與關於它是多麼地道。我是否設法充分考慮了迄今爲止我編寫的Clojure代碼的命令範例?那就是:
(ns print-neatly)
;-----------------------------------------------------------------------------
; High-order function which returns a function that computes the cost
; for i and j where i is the starting word index and j is the ending word
; index for the word list "word-list."
;
(defn make-cost [word-list max-length]
(fn [i j]
(let [total (reduce + (map #(count %1) (subvec word-list i j)))
result (- max-length (+ (- j i) total))]
(if (< result 0)
nil
(* result result result)))))
;-----------------------------------------------------------------------------
; initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
(let [; Prepend nil to our collection.
append-empty
(fn [v]
(cons nil v))
; Like append-empty; append cost-func for first column.
append-cost
(fn [v, index]
(cons (cost-func 0 index) v))
; Define an internal helper which calls append-empty N times to create
; a new vector consisting of N nil values.
; ie., [nil[0] nil[1] nil[2] ... nil[N]]
construct-empty-vec
(fn [n]
(loop [cnt n coll()]
(if (neg? cnt)
(vec coll)
(recur (dec cnt) (append-empty coll)))))
; Construct the base level where each entry is the basic cost function
; calculated for the base level. (ie., starting and ending at the
; same word)
construct-base
(fn [n]
(loop [cnt n coll()]
(if (neg? cnt)
(vec coll)
(recur (dec cnt) (append-cost coll cnt)))))]
; The main matrix-construct logic, which just creates a new Nx1 vector
; via construct-empty-vec, then prepends that to coll.
; We end up with a vector of N entries where each entry is a Nx1 vector.
(loop [cnt n coll()]
(cond
(zero? cnt) (vec coll)
(= cnt 1) (recur (dec cnt) (cons (construct-base n) coll))
:else (recur (dec cnt) (cons (construct-empty-vec n) coll))))))
;-----------------------------------------------------------------------------
; Return the value at a given index in a matrix.
;
(defn matrix-lookup [matrix row col]
(nth (nth matrix row) col))
;-----------------------------------------------------------------------------
; Return a new matrix M with M[row,col] = value
; but otherwise M[i,j] = matrix[i,j]
;
(defn matrix-set [matrix row col value]
(let [my-row (nth matrix row)
my-cel (assoc my-row col value)]
(assoc matrix row my-cel)))
;-----------------------------------------------------------------------------
; Print the matrix out in a nicely formatted fashion.
;
(defn matrix-print [matrix]
(doseq [j (range (count matrix))]
(doseq [i (range (count matrix))]
(let [el (nth (nth matrix i) j)]
(print (format "%1$8.8s" el)))) ; 1st item max 8 and min 8 chars
(println)))
;-----------------------------------------------------------------------------
; Main
;-----------------------------------------------------------------------------
;-----------------------------------------------------------------------------
; Grab all arguments from the command line.
;
(let [line-length (Integer. (first *command-line-args*))
words (vec (rest *command-line-args*))
cost (make-cost words line-length)
matrix (matrix-construct (count words) cost)]
(matrix-print matrix))
編輯:我已經更新了我與給出的反饋矩陣構造函數,所以現在它實際上是一條線比我的Python實現更短。
;-----------------------------------------------------------------------------
; Initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
(letfn [; Build an n-length vector of nil
(construct-empty-vec [n]
(vec (repeat n nil)))
; Short-cut so we can use 'map' to apply the cost-func to each
; element in a range.
(my-cost [j]
(cost-func 0 j))
; Construct the base level where each entry is the basic cost function
; calculated for the base level. (ie., starting and ending at the
; same word)
(construct-base-vec [n]
(vec (map my-cost (range n))))]
; The main matrix-construct logic, which just creates a new Nx1 vector
; via construct-empty-vec, then prepends that to coll.
; We end up with a vector of N entries where each entry is a Nx1 vector.
(let [m (repeat (- n 1) (construct-empty-vec n))]
(vec (cons (construct-base-vec n) m)))))
1.很好的建議。我不知道有這樣的事情,讓我們來做。 2.我努力理解使用doseq構造矩陣。希望對實例有更多的建議? :) 4.我曾經使用過一些地圖,但最終用'_'忽略了一些值,並認爲這是「不純」,因爲缺少一個更好的單詞。不過,這可能更習慣,因爲我最近在一些例子中已經看到了它。 5.你是什麼意思的「原始數組」? 感謝您的反饋! (回答縮短以適應評論限制) – GrooveStomp 2010-11-07 06:36:40