儘管最初的問題是詢問關於整數編碼的非常通用的場景,但我會建議不太可能存在一種完全通用的方法。例如,如果P [i]或多或少是隨機的(從信息論的角度來看),如果有什麼工作的話,我會感到驚訝。
因此,讓我們把注意力轉向OP生成包含完全K部分的整數N分區的實際問題。當用組合對象作爲整數進行編碼時,我們應該儘可能多地保留組合結構。 爲此,我們轉向經典文本Combinatorial Algorithms by Nijenhuis and Wilf,特別是第13章。實際上,在本章中,他們演示了一個框架來枚舉和抽樣一些組合族 - 包括N的分區,其中最大的部分等於K.使用衆所周知的分區與K部分之間的分區和最大部分爲K的分區(採用Ferrers diagram的轉置),我們發現我們只需要對解碼過程進行更改。
不管怎麼說,這裏的一些源代碼:
import sys
import random
import time
if len(sys.argv) < 4 :
sys.stderr.write("Usage: {0} N K iter\n".format(sys.argv[0]))
sys.stderr.write("\tN = number to be partitioned\n")
sys.stderr.write("\tK = number of parts\n")
sys.stderr.write("\titer = number of iterations (if iter=0, enumerate all partitions)\n")
quit()
N = int(sys.argv[1])
K = int(sys.argv[2])
iters = int(sys.argv[3])
if (N < K) :
sys.stderr.write("Error: N<K ({0}<{1})\n".format(N,K))
quit()
# B[n][k] = number of partitions of n with largest part equal to k
B = [[0 for j in range(K+1)] for i in range(N+1)]
def calc_B(n,k) :
for j in xrange(1,k+1) :
for m in xrange(j, n+1) :
if j == 1 :
B[m][j] = 1
elif m - j > 0 :
B[m][j] = B[m-1][j-1] + B[m-j][j]
else :
B[m][j] = B[m-1][j-1]
def generate(n,k,r=None) :
path = []
append = path.append
# Invalid input
if n < k or n == 0 or k == 0:
return []
# Pick random number between 1 and B[n][k] if r is not specified
if r == None :
r = random.randrange(1,B[n][k]+1)
# Construct path from r
while r > 0 :
if n==1 and k== 1:
append('N')
r = 0 ### Finish loop
elif r <= B[n-k][k] and B[n-k][k] > 0 : # East/West Move
append('E')
n = n-k
else : # Northeast/Southwest move
append('N')
r -= B[n-k][k]
n = n-1
k = k-1
# Decode path into partition
partition = []
l = 0
d = 0
append = partition.append
for i in reversed(path) :
if i == 'N' :
if d > 0 : # apply East moves all at once
for j in xrange(l) :
partition[j] += d
d = 0 # reset East moves
append(1) # apply North move
l += 1
else :
d += 1 # accumulate East moves
if d > 0 : # apply any remaining East moves
for j in xrange(l) :
partition[j] += d
return partition
t = time.clock()
sys.stderr.write("Generating B table... ")
calc_B(N, K)
sys.stderr.write("Done ({0} seconds)\n".format(time.clock()-t))
bmax = B[N][K]
Bits = 0
sys.stderr.write("B[{0}][{1}]: {2}\t".format(N,K,bmax))
while bmax > 1 :
bmax //= 2
Bits += 1
sys.stderr.write("Bits: {0}\n".format(Bits))
if iters == 0 : # enumerate all partitions
for i in xrange(1,B[N][K]+1) :
print i,"\t",generate(N,K,i)
else : # generate random partitions
t=time.clock()
for i in xrange(1,iters+1) :
Q = generate(N,K)
print Q
if i%1000==0 :
sys.stderr.write("{0} written ({1:.3f} seconds)\r".format(i,time.clock()-t))
sys.stderr.write("{0} written ({1:.3f} seconds total) ({2:.3f} iterations per second)\n".format(i, time.clock()-t, float(i)/(time.clock()-t) if time.clock()-t else 0))
而這裏的性能的一些例子(在MacBook Pro上8.3,2GHz的酷睿i7,4 GB,Mac OSX版10.6.3,Python的2.6.1):
mhum$ python part.py 20 5 10
Generating B table... Done (6.7e-05 seconds)
B[20][5]: 84 Bits: 6
[7, 6, 5, 1, 1]
[6, 6, 5, 2, 1]
[5, 5, 4, 3, 3]
[7, 4, 3, 3, 3]
[7, 5, 5, 2, 1]
[8, 6, 4, 1, 1]
[5, 4, 4, 4, 3]
[6, 5, 4, 3, 2]
[8, 6, 4, 1, 1]
[10, 4, 2, 2, 2]
10 written (0.000 seconds total) (37174.721 iterations per second)
mhum$ python part.py 20 5 1000000 > /dev/null
Generating B table... Done (5.9e-05 seconds)
B[20][5]: 84 Bits: 6
100000 written (2.013 seconds total) (49665.478 iterations per second)
mhum$ python part.py 200 25 100000 > /dev/null
Generating B table... Done (0.002296 seconds)
B[200][25]: 147151784574 Bits: 37
100000 written (8.342 seconds total) (11987.843 iterations per second)
mhum$ python part.py 3000 200 100000 > /dev/null
Generating B table... Done (0.313318 seconds)
B[3000][200]: 3297770929953648704695235165404132029244952980206369173 Bits: 181
100000 written (59.448 seconds total) (1682.135 iterations per second)
mhum$ python part.py 5000 2000 100000 > /dev/null
Generating B table... Done (4.829086 seconds)
B[5000][2000]: 496025142797537184410324290349759736884515893324969819660 Bits: 188
100000 written (255.328 seconds total) (391.653 iterations per second)
mhum$ python part-final2.py 20 3 0
Generating B table... Done (0.0 seconds)
B[20][3]: 33 Bits: 5
1 [7, 7, 6]
2 [8, 6, 6]
3 [8, 7, 5]
4 [9, 6, 5]
5 [10, 5, 5]
6 [8, 8, 4]
7 [9, 7, 4]
8 [10, 6, 4]
9 [11, 5, 4]
10 [12, 4, 4]
11 [9, 8, 3]
12 [10, 7, 3]
13 [11, 6, 3]
14 [12, 5, 3]
15 [13, 4, 3]
16 [14, 3, 3]
17 [9, 9, 2]
18 [10, 8, 2]
19 [11, 7, 2]
20 [12, 6, 2]
21 [13, 5, 2]
22 [14, 4, 2]
23 [15, 3, 2]
24 [16, 2, 2]
25 [10, 9, 1]
26 [11, 8, 1]
27 [12, 7, 1]
28 [13, 6, 1]
29 [14, 5, 1]
30 [15, 4, 1]
31 [16, 3, 1]
32 [17, 2, 1]
33 [18, 1, 1]
我將它留給OP來驗證此代碼確實根據所需的(統一)分佈生成分區。
編輯:增加了一個枚舉功能的例子。
你有能力將k映射到P [k]嗎?你怎麼知道P [k]是什麼?其中一些可能取決於這些P [k]實際是什麼以及它們是如何表示的。 – mhum 2013-02-16 00:02:40
P的集合中的每個成員對應於Q的整數分區,N部分。例如令Q = 20且N = 4,則對於Q和N的第一詞彙劃分,即[17,1,1,1]映射到P,爲17010101(即P [0])。因此,整數分區[5,5,5,5]對應於5050505。從具有N個部分的Q的所有整數分區集合中隨機抽樣,無遞歸且具有低的拒絕率。在那裏,我把它全部拿走了。爲了答案,這是值得的。 – klocey 2013-02-16 00:11:48
不妨加上一些鼓勵:當N小於5時,這種方法快速致盲。快速致盲,我的意思是它使事件的概率太小,以至於我的計算機無法計算它(例如,使用典型的隨機分區算法)變得非常可能。 – klocey 2013-02-16 00:14:42