0
也許一個簡單的問題 - 查看下面的代碼如何重新編寫下面提供的示例以避免發生重複?對多個功能輸入執行相同的操作
輸入是熊貓數據框架,它們在同一列名稱下包含不同的值 - 基本上是來自不同觀察者的相同事件的測量結果。我想將這個函數的長度(和其他有類似重複的地方 - 不提供)縮短一半。
這看起來像使用for循環的地方,但我不知道如何/如果我可以實現它來遍歷函數輸入?我期望這是一個直截了當的答案,但我一直無法有效地針對我的谷歌搜索來自己揭示答案。希望你能幫助!
def data_manipulation(a, b):
"""
Performs math operations on the values contained in trajectory1(and 2). The raw values contained there are converted
to more useful forms: e.g. apparent to absolute magnitude. These new results are added to the pandas data frame.
Unnecessary data columns are deleted.
All equations/constants are lifted from read_data_JETS.
To Do: - remove code duplication where the same operation in written twice (once for each station).
:param a: Pandas Data Frame containing values from first station.
:param b: Pandas Data Frame containing values from second station.
:return:
"""
# Convert apparent magnitude ('Bright') to absolute magnitude (Abs_Mag).
a['Abs_Mag'] = (a['Bright'] + 2.5 *
np.log10((100 ** 2)/((a['dist']/1000) ** 2))) - 0.25
b['Abs_Mag'] = (b['Bright'] + 2.5 *
np.log10((100 ** 2)/((b['dist']/1000) ** 2))) - 0.25
# Calculate the error in absolute magnitude where 1 is the error in apparent magnitude and 0.001(km) is the error
# in distance ('dist').
a['Abs_Mag_Err'] = 1 + (5/(a['dist']/1000) * 0.001)
b['Abs_Mag_Err'] = 1 + (5/(b['dist']/1000) * 0.001)
# Calculate the meteor luminosity from absolute magnitude.
a['Luminosity'] = 525 * 10 ** (-0.4 * a['Abs_Mag'])
b['Luminosity'] = 525 * 10 ** (-0.4 * b['Abs_Mag'])
# Calculate the error in luminosity.
a['Luminosity_Err'] = abs(-0.4 * a['Luminosity'] * np.log(10) * a['Abs_Mag_Err'])
b['Luminosity_Err'] = abs(-0.4 * b['Luminosity'] * np.log(10) * b['Abs_Mag_Err'])
# Calculate the integrated luminosity of each meteor for both stations.
a['Intg_Luminosity'] = a['Luminosity'].sum() * 0.04
b['Intg_Luminosity'] = b['Luminosity'].sum() * 0.04
# Delete column containing apparent magnitude.
del a['Bright']
del b['Bright']
只是傳遞一個字典的功能,以及(對於每個字典一次)調用該函數的兩倍。 –
非常好,謝謝! –