當我調用一個函數時,它就起作用了。但是當我在UDF中調用該函數將無法工作。UDF中的Spark classnotfoundexception
這是完整的代碼。
val sparkConf = new SparkConf().setAppName("HiveFromSpark").set("spark.driver.allowMultipleContexts","true")
val sc = new SparkContext(sparkConf)
val hive = new org.apache.spark.sql.hive.HiveContext(sc)
///////////// UDFS
def toDoubleArrayFun(vec:Any) : scala.Array[Double] = {
return vec.asInstanceOf[WrappedArray[Double]].toArray
}
def toDoubleArray=udf((vec:Any) => toDoubleArrayFun(vec))
//////////// PROCESS
var df = hive.sql("select vec from mst_wordvector_tapi_128dim where word='soccer'")
println("==== test get value then transform")
println(df.head().get(0))
println(toDoubleArrayFun(df.head().get(0)))
println("==== test transform by udf")
df.withColumn("word_v", toDoubleArray(col("vec")))
.show(10);
然後這個輸出。
sc: org.apache.spark.SparkContext = [email protected]
hive: org.apache.spark.sql.hive.HiveContext =
toDoubleArrayFun: (vec: Any)Array[Double]
toDoubleArray: org.apache.spark.sql.UserDefinedFunction
df: org.apache.spark.sql.DataFrame = [vec: array<double>]
==== test get value then transform
WrappedArray(-0.88675,, 0.0216657)
[[email protected]
==== test transform by udf
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 2.0 failed 4 times, most recent failure: Lost task 0.3 in stage 2.0 (TID 5, xdad008.band.nhnsystem.com): java.lang.ClassNotFoundException: $iwC$$iwC$$iwC$$iwC$$iwC$$$$5ba2a895f25683dd48fe725fd825a71$$$$$$iwC$$anonfun$toDoubleArray$1
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
此處輸出完整。 https://gist.github.com/jeesim2/efb52f12d6cd4c1b255fd0c917411370
正如你所看到的「toDoubleArrayFun」函數運行良好,但在udf它聲明ClassNotFoundException。
我無法更改配置單元數據結構,並且需要將vec轉換爲Array [Double]才能生成Vector實例。
那麼上面的代碼有什麼問題?
星火版本是1.6.1
更新1
蜂巢表的 'VEC' 列類型爲 「array<double>
」
下面的代碼也會導致錯誤
var df = hive.sql("select vec from mst_wordvector_tapi_128dim where
word='hh'")
df.printSchema()
var word_vec = df.head().get(0)
println(word_vec)
println(Vectors.dense(word_vec))
輸出
df: org.apache.spark.sql.DataFrame = [vec: array<double>]
root
|-- vec: array (nullable = true)
| |-- element: double (containsNull = true)
==== test get value then transform
word_vec: Any = WrappedArray(-0.88675,...7)
<console>:288: error: overloaded method value dense with alternatives:
(values: Array[Double])org.apache.spark.mllib.linalg.Vector <and>
(firstValue: Double,otherValues:Double*)org.apache.spark.mllib.linalg.Vector
cannot be applied to (Any)
println(Vectors.dense(word_vec))
這意味着配置單元'array<double>
'列不能被鑄造到Array<Double>
其實我想計算距離:雙與兩個array<double>
列。 如何添加基於array<double>
列的矢量列?
典型方法是
Vectors.sqrt(Vectors.dense(Array<Double>, Array<Double>)
啊,可序列化的重點!但是,我如何使數據幀列'Array',而不是任何?我更新了問題! –
而不是你的udf函數中的'Any',只需將數據類型定義爲'WrappedArray [Double]',你應該沒問題。 :) –
謝謝你的答案..順便說一句,當我設置參數類型爲'WrappedArray [雙]'而不是'任何'它失敗。 ':346:錯誤:類型不匹配;發現:任何。需要:scala.collection.mutable.WrappedArray [Double] println(Vectors.dense(toDoubleArrayFun(df.head()。get(0))))' –