即使我在Hadoop的一個新手,發現這個問題很有意思。這就是我解決這個問題的方法。
public class Multiwordcnt {
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
Job myJob = new Job(conf, "Multiwordcnt");
String[] userargs = new GenericOptionsParser(conf, args).getRemainingArgs();
myJob.setJarByClass(Multiwordcnt.class);
myJob.setMapperClass(MyMapper.class);
myJob.setReducerClass(MyReducer.class);
myJob.setMapOutputKeyClass(Text.class);
myJob.setMapOutputValueClass(IntWritable.class);
myJob.setOutputKeyClass(Text.class);
myJob.setOutputValueClass(IntWritable.class);
myJob.setInputFormatClass(TextInputFormat.class);
myJob.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(myJob, new Path(userargs[0]));
FileOutputFormat.setOutputPath(myJob, new Path(userargs[1]));
System.exit(myJob.waitForCompletion(true) ? 0 : 1);
}
public static class MyMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
Text emitkey = new Text();
IntWritable emitvalue = new IntWritable(1);
public void map(LongWritable key , Text value, Context context) throws IOException, InterruptedException {
String filePathString = ((FileSplit) context.getInputSplit()).getPath().toString();
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()){
String filepathword = filePathString + "*" + tokenizer.nextToken();
emitkey.set(filepathword);
context.write(emitkey, emitvalue);
}
}
}
public static class MyReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
Text emitkey = new Text();
IntWritable emitvalue = new IntWritable();
private MultipleOutputs<Text,IntWritable> multipleoutputs;
public void setup(Context context) throws IOException, InterruptedException {
multipleoutputs = new MultipleOutputs<Text,IntWritable>(context);
}
public void reduce(Text key , Iterable <IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values){
sum = sum + value.get();
}
String pathandword = key.toString();
String[] splitted = pathandword.split("\\*");
String path = splitted[0];
String word = splitted[1];
emitkey.set(word);
emitvalue.set(sum);
System.out.println("word:" + word + "\t" + "sum:" + sum + "\t" + "path: " + path);
multipleoutputs.write(emitkey,emitvalue , path);
}
public void cleanup(Context context) throws IOException, InterruptedException {
multipleoutputs.close();
}
}
}
你無法正確把握哪部分? –
若昂,如什麼是在減速功能對應的代碼,本身訪問值(從映射器)seperately爲每個輸入文件?總之,請註明該鏈接減速代碼也一樣,這將會是有益的 – khanna
的可能重複的[Hadoop的MapReduce的 - 對於每個輸入的一個輸出文件(http://stackoverflow.com/questions/8886285/hadoop-mapreduce-one-output-file-for-each-input) –