2017-10-16 96 views
1

我製作了許多圖表,比較了兩個組(例如,男性/女性)跨多個變量的圖表。標準-graph條形輸出將所有男士條形碼組合在一起,並將所有條形碼女士組合在一起。我希望找到一種簡單的方法來創建條形圖,這些條形圖首先通過目標變量(即變量繪製圖形)對組進行分組,然後通過-over-變量(例如性別)進行分組。按目標變量排序圖形條,然後是排序變量

我有一個這樣做的方法,但它非常繁瑣。請參閱下圖。

*Set seed + obs 
clear 
set seed 442 
set obs 100 

*Generate two outcomes 
gen x1 = uniform() 
gen x2 = uniform() 

*Generate crossing variable 
gen gender = 0 in 1/50 
replace gender = 1 in 51/100 
label define gender_lab 0 "Male" 1 "Female" 
label values gender gender_lab 

*Extract means by gender 
gen b_male = . 
gen b_female = . 
sum x1 if gender == 0 
replace b_male = r(mean) in 1 
sum x1 if gender == 1 
replace b_female = r(mean) in 1 
sum x2 if gender == 0 
replace b_male = r(mean) in 2 
sum x2 if gender == 1 
replace b_female = r(mean) in 2 

*Establish order of graph 
gen index_male = _n*3 in 1/2 
gen index_female = (_n*3) + 1 in 1/2 


*This is what -graph bar- produces naturally 
graph bar x1 x2, over(gender) 

*This is closer to what I want 
twoway bar b_male index_male || bar b_female index_female, xlabel(3.5 "x1" 6.5 "x2", notick labgap(4)) xmlabel(3 "Male" 4 "Female" 6 "Male" 7 "Female") legend(off) 

是否有使用graph bar但仍建立我想要的排序順序的簡單方法?我有時每天都會生成數十個這樣的圖表,所以我想盡可能地避免不必要的步驟。

回答

3

這是一個模型問題:非常感謝!

我將首先複製您的代碼,並附帶一些可能有興趣的小小簡化。

*Set seed + obs 
clear 
set seed 442 
set obs 100 

*Generate two outcomes 
gen x1 = runiform() 
gen x2 = runiform() 

*Generate crossing variable 
gen gender = _n > 50 
label define gender_lab 0 "Male" 1 "Female" 
label values gender gender_lab 

*Extract means by gender 
sum x1 if gender == 0 
gen b_male = r(mean) in 1 
sum x1 if gender == 1 
gen b_female = r(mean) in 1 
sum x2 if gender == 0 
replace b_male = r(mean) in 2 
sum x2 if gender == 1 
replace b_female = r(mean) in 2 

*Establish order of graph 
gen index_male = _n*3 in 1/2 
gen index_female = (_n*3) + 1 in 1/2 

*This is what -graph bar- produces naturally 
graph bar x1 x2, over(gender) name(G1) 

*This is closer to what I want 
twoway bar b_male index_male || bar b_female index_female, /// 
xlabel(3.5 "x1" 6.5 "x2", notick labgap(4))    /// 
xmlabel(3 "Male" 4 "Female" 6 "Male" 7 "Female") legend(off) name(G2) 

好消息是,有一次你已經由Eric A. Booth和自己從SSC安裝statplot單行方案。 (Eric的電子郵件地址是幫助文件不再是最新的。)

ssc inst statplot 
statplot x1 x2, over(gender) 
statplot x1 x2, over(gender) recast(bar) 
statplot x1 x2, over(gender) recast(bar) asyvars yla(, ang(h)) /// 
bar(2, bcolor(orange*0.8)) bar(1, bcolor(blue*0.8)) 

以下是顯示完成操作的最後一張圖。

statplot默認爲意味着什麼,你顯示,所以你不必計算手段。其他統計數據可用。

enter image description here

+0

我聽說過-statplot-的一次,但是忘記了它。我很高興能夠被提醒,並用完美的插圖來解決我的問題。謝謝! – Amberopolis

+0

我也有時忘了它,而我是它的第二作者。 –