我在一組,100個相同的正方形和100個相同的圓上有200個圖像。圖像是44x41像素,圖像是灰度。我正在嘗試構建一個簡單的分類器來學習tensorflow。TensorFlow:CovNet爲所有示例返回相同的輸出
問題:無論輸入圖像如何,預測向量始終具有相同的值。
這裏是我的神經網絡的代碼:
import tensorflow as tf
import random as r
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from PIL import Image
%matplotlib inline
#create pictures
for i in range(100):
fig1 = plt.figure(frameon = False, figsize=(1,1), dpi=32)
ax1 = fig1.add_subplot(111, aspect='equal')
posx = 0.25
posy = 0.25
ax1.add_patch(
patches.Rectangle(
(posx,posy), # (x,y)
0.5, # width
0.5, # height
)
)
ax1.axis('off')
fig1.savefig('rect' + str(i) + '.png', bbox_inches='tight')
for i in range(100):
fig1 = plt.figure(frameon = False, figsize=(1,1), dpi=32)
ax1 = fig1.add_subplot(111, aspect='equal')
posx = 0.5
posy = 0.5
ax1.add_patch(
patches.Circle(
(posx,posy), # (x,y)
0.3,
)
)
ax1.axis('off')
fig1.savefig('circ' + str(i) + '.png', bbox_inches='tight')
# create vectors
train_features = np.zeros((200,44,41,1))
train_labels = np.zeros((200,2))
for i in range(100):
#get rect
im = Image.open("rect" + str(i) + ".png")
im = im.convert(mode = "L")
xxx =list(im.getdata())
imdata = np.reshape(xxx, (44,41,1))
train_features[i] = imdata
train_labels[i] = np.array([0,1])
#get circle
im = Image.open("circ" + str(i) + ".png")
im = im.convert(mode = "L")
xxx = list(im.getdata())
imdata = np.reshape(xxx, (44,41,1))
train_features[i+100] = imdata
train_labels[i+100] = np.array([1,0])
tf.reset_default_graph()
features = tf.placeholder(tf.float32,shape=[None,44,41, 1])
labels = tf.placeholder(tf.float32,shape=[None,2])
weights = tf.Variable(tf.truncated_normal([3,3, 1, 16], stddev=0.1))
biases = tf.Variable(tf.zeros(16))
weights2 = tf.Variable(tf.truncated_normal([3,3, 16, 64], stddev=0.1))
biases2 = tf.Variable(tf.zeros(64))
conv_layer = tf.nn.conv2d(features, weights, strides=[1, 1, 1, 1], padding='SAME')
conv_layer_b = tf.nn.bias_add(conv_layer, biases)
conv_layer_relu = tf.nn.relu(conv_layer_b)
conv_layer_pool = tf.nn.max_pool(conv_layer_relu, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME')
conv_layer2 = tf.nn.conv2d(conv_layer_pool, weights2, strides=[1, 1, 1, 1], padding='SAME')
conv_layer2_b = tf.nn.bias_add(conv_layer2, biases2)
conv_layer2_relu = tf.nn.relu(conv_layer2_b)
conv_layer2_pool = tf.nn.max_pool(conv_layer2_relu, ksize=[1, 2, 2, 1], strides=[1, 1, 1, 1], padding='SAME')
#fully connected layer
weights_fc = tf.Variable(tf.truncated_normal([44*41*64, 256], stddev=0.1))
biases_fc = tf.Variable(tf.zeros([256]))
fc = tf.reshape(conv_layer2_pool, [-1, weights_fc.get_shape().as_list()[0]])
fc_logit = tf.add(tf.matmul(fc, weights_fc), biases_fc)
fc_relu = tf.nn.relu(fc_logit)
#fc_drop = tf.nn.dropout(fc_relu, 0.75)
# final layer
weights_out = tf.Variable(tf.truncated_normal([256, 2], stddev=0.1))
biases_out = tf.Variable(tf.zeros([2]))
out = tf.add(tf.matmul(fc_relu, weights_out), biases_out)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out, labels=labels))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(100):
sess.run(optimizer, feed_dict={
features: train_features[:],
labels: train_labels[:]})
for i in range(200):
outx = sess.run(out, feed_dict={
features: [train_features[i]],
labels: [train_labels[i]]})
print(outx)
print(train_labels[i])
print('---')
你好,謝謝你的迴應。我改變了命名,以避免給兩個張量相同的名稱,但它沒有解決問題。 – jojw85
檢查我更新的答案! – prometeu
仍然無法正常工作。我在問題 – jojw85