0
我在執行一個我的mapreduce作業時遇到問題。作爲我的map reduce任務的一部分,我使用了包含多個映射方法和單個reducer方法的mapreduce連接。(Hadoop):reduce方法在執行mapreduce作業時未被執行/調用
我的兩個map方法都得到執行,但我的reducer沒有從我的驅動程序類執行/調用。
因此,最終輸出只包含在我的地圖階段收集的數據。
我在減少階段使用錯誤的輸入和輸出值嗎? 地圖和縮小階段之間是否有任何輸入和輸出不匹配?
在這方面幫助我。
這裏是我的代碼..
public class CompareInputTest extends Configured implements Tool {
public static class FirstFileInputMapperTest extends Mapper<LongWritable,Text,Text,Text>{
private Text word = new Text();
private String keyData,data,sourceTag = "S1$";
public void map(LongWritable key,Text value,Context context) throws IOException, InterruptedException{
String[] values = value.toString().split(";");
keyData = values[1];
data = values[2];
context.write(new Text(keyData), new Text(data+sourceTag));
}
}
public static class SecondFileInputMapperTest extends Mapper<LongWritable,Text,Text,Text>{
private Text word = new Text();
private String keyData,data,sourceTag = "S2$";
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException{
String[] values = value.toString().split(";");
keyData = values[1];
data = values[2];
context.write(new Text(keyData), new Text(data+sourceTag));
}
}
public static class CounterReducerTest extends Reducer
{
private String status1, status2;
public void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
System.out.println("in reducer");
for(Text value:values)
{
String splitVals[] = currValue.split("$");
System.out.println("in reducer");
/*
* identifying the record source that corresponds to a commonkey and
* parses the values accordingly
*/
if (splitVals[0].equals("S1")) {
status1 = splitVals[1] != null ? splitVals[1].trim(): "status1";
} else if (splitVals[0].equals("S2")) {
// getting the file2 and using the same to obtain the Message
status2 = splitVals[2] != null ? splitVals[2].trim(): "status2";
}
}
context.write(key, new Text(status1+"$$$"));
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new CompareInputTest(),
args);
System.exit(res);
}
}
public int run(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "count");
job.setJarByClass(CompareInputTest.class);
MultipleInputs.addInputPath(job,new Path(args[0]),TextInputFormat.class,FirstFileInputMapperTest.class);
MultipleInputs.addInputPath(job,new Path(args[1]),TextInputFormat.class,SecondFileInputMapperTest.class);
job.setReducerClass(CounterReducerTest.class);
//job.setNumReduceTasks(1);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileOutputFormat.setOutputPath(job, new Path(args[2]));
return (job.waitForCompletion(true) ? 0 : 1);
}
}
的Hadoop的哪個版本? – 2014-10-12 04:16:20