2016-08-15 100 views
0

時,我有以下pyspark代碼拋出錯誤,拋出錯誤PySpark執行MapReduce工作

data = sc.textFile("file:///zika-map/cdc_zika/update_clean_zika.csv") 
header = data.first() 
byCountryNoHeader = data.filter(lambda x: x!=header) 
sepColumn = byCountryNoHeader.map(lambda x: x.split(",")) 
byCountry =sepColumn.map(lambda x: (x[1], x[5])).reduceByKey(lambda x,y: int(x)+int(y)) 
byCountry.collect() 

的Update_clean_zika.csv具有類似如下的數據:

report date country city location type data field value unit 
19/03/2016 Argentina Buenos Aires province cumulative confirmed local cases 0 cases 
19/03/2016 Argentina Buenos Aires province cumulative probable local cases 0 cases 
19/03/2016 Argentina Buenos Aires province cumulative confirmed imported cases 2 cases 
19/03/2016 Argentina Buenos Aires province cumulative probable imported cases 1 cases 
19/03/2016 Argentina Buenos Aires province cumulative cases under study 127 cases 
19/03/2016 Argentina Buenos Aires province cumulative cases discarded 0 cases 
19/03/2016 Argentina CABA province cumulative confirmed local cases 0 cases 
19/03/2016 Argentina CABA province cumulative probable local cases 0 cases 
19/03/2016 Argentina CABA province cumulative confirmed imported cases 9 cases 
19/03/2016 Argentina CABA province cumulative probable imported cases 0 cases 
19/03/2016 Argentina CABA province cumulative cases under study 68 cases 

基本上,我想做的是,繪製具有案例的國家,然後根據國家提出總案例。測繪工作正常,但reduceByKey導致如下錯誤:

Traceback (most recent call last): 

    File "<ipython-input-19-db6ad3fdabe0>", line 16, in <module> 
    byCountry.groupByKey().collect() 

    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 771, in collect 
    port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) 

    File "C:\Spark\python\lib\py4j-0.9-src.zip\py4j\java_gateway.py", line 813, in __call__ 
    answer, self.gateway_client, self.target_id, self.name) 

    File "C:\Spark\python\lib\py4j-0.9-src.zip\py4j\protocol.py", line 308, in get_return_value 
    format(target_id, ".", name), value) 

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. 
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 46.0 failed 1 times, most recent failure: Lost task 0.0 in stage 46.0 (TID 63, localhost): org.apache.spark.api.python.PythonException: Traceback (most recent call last): 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\worker.py", line 111, in main 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\worker.py", line 106, in process 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 2346, in pipeline_func 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 2346, in pipeline_func 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 317, in func 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 1776, in combineLocally 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\shuffle.py", line 238, in mergeValues 
    d[k] = comb(d[k], v) if k in d else creator(v) 
    File "<ipython-input-19-db6ad3fdabe0>", line 7, in <lambda> 
ValueError: invalid literal for int() with base 10: 'zika confirmed laboratory' 

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166) 
    at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207) 
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125) 
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70) 
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) 
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) 
    at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:342) 
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) 
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) 
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) 
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) 
    at org.apache.spark.scheduler.Task.run(Task.scala:89) 
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) 
    at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) 
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) 
    at java.lang.Thread.run(Unknown Source) 

Driver stacktrace: 
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431) 
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419) 
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418) 
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) 
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) 
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418) 
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) 
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799) 
    at scala.Option.foreach(Option.scala:236) 
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799) 
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640) 
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599) 
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588) 
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) 
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620) 
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832) 
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845) 
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858) 
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929) 
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927) 
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) 
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) 
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:316) 
    at org.apache.spark.rdd.RDD.collect(RDD.scala:926) 
    at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:405) 
    at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) 
    at sun.reflect.GeneratedMethodAccessor49.invoke(Unknown Source) 
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) 
    at java.lang.reflect.Method.invoke(Unknown Source) 
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231) 
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381) 
    at py4j.Gateway.invoke(Gateway.java:259) 
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133) 
    at py4j.commands.CallCommand.execute(CallCommand.java:79) 
    at py4j.GatewayConnection.run(GatewayConnection.java:209) 
    at java.lang.Thread.run(Unknown Source) 
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last): 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\worker.py", line 111, in main 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\worker.py", line 106, in process 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 2346, in pipeline_func 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 2346, in pipeline_func 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 317, in func 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\rdd.py", line 1776, in combineLocally 
    File "C:\Spark\python\lib\pyspark.zip\pyspark\shuffle.py", line 238, in mergeValues 
    d[k] = comb(d[k], v) if k in d else creator(v) 
    File "<ipython-input-19-db6ad3fdabe0>", line 7, in <lambda> 
ValueError: invalid literal for int() with base 10: 'zika confirmed laboratory' 

    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166) 
    at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207) 
    at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125) 
    at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70) 
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) 
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) 
    at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:342) 
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306) 
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:270) 
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73) 
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) 
    at org.apache.spark.scheduler.Task.run(Task.scala:89) 
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227) 
    at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) 
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) 
1 more 

我已經嘗試了各種方法,並從不同的#1的主題,但沒有運氣。任何幫助或建議將不勝感激。

+0

你爲什麼不使用DataFrames? –

+0

我已經使用齊柏林飛船,但又出現了類似的錯誤。 – Emdadul

+0

我建議您使用DataFrames和Databricks Spark CSV連接器。 –

回答

0

我已經基本想通了,有幾個空值的問題。因此,創建了一個數據框,然後使用Spark SQL可以忽略這些數據框。

0

你有一個Value Error這是在lambda函數當你發生:int(x) + int(y)。標準錯誤顯示:ValueError: invalid literal for int() with base 10: 'zika confirmed laboratory'這意味着的x[5]一些值(一個或多個)不能被轉換爲int,即「寨卡侷限於實驗室」不能被轉換爲int。您可能只需要修復索引。

+0

我已經檢查值再沒有「茲卡該列 – Emdadul

+0

對於CSV的部分確認實驗室」你已經如上圖所示,如果你想加起來值列,那麼豈不是'X [4]'第五列? –

+0

不,因爲這些列是report_date,country,city,location_type,data_field,value,unit – Emdadul