我試圖訓練SVM並在OpenCV的HOGDescrpitor中使用它。HOGDescriptor OpenCV dsize.area()聲明失敗
的XML文件被成功地生成和HOGDescriptor加載,但是當我試圖發現一些對象,則發生斷言:
OpenCV Error: Assertion failed (dsize.area() || (inv_scale_x > 0 && inv_scale_y > 0)) in resize, file /build/buildd/opencv-2.4.8+dfsg1/modules/imgproc/src/imgwarp.cpp, line 1825 terminate called after throwing an instance of 'tbb::captured_exception' what(): /build/buildd/opencv-2.4.8+dfsg1/modules/imgproc/src/imgwarp.cpp:1825: error: (-215) dsize.area() || (inv_scale_x > 0 && inv_scale_y > 0) in function resize
爲了實現SVM教練我使用提示從using OpenCV and SVM with images
生成的XML文件大約有144K字節。對於陽性和陰性樣品我用尺寸64x128的圖像(2000陽性和2000爲負)
參數用於SVM訓練者:
CvSVMParams svmParams;
svmParams.svm_type = CvSVM::C_SVC;
svmParams.kernel_type = CvSVM::LINEAR;
svmParams.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 10000, 1e-6);
代碼檢測:
int main()
{
HOGDescriptor hog();
if(!hog.load("/home/bin/hogdescriptor.xml"))
{
std::cout << "Failed to load file!" << std::endl;
return -1;
}
VideoCapture cap(0);
if(!cap.isOpened())
{
std::cout << "Error opening camera!" << std::endl;
return 1;
}
Mat testImage;
while ((cvWaitKey(30) & 255) != 27)
{
cap >> testImage;
detectTest(hog, testImage);
imshow("HOG custom detection", testImage);
}
return EXIT_SUCCESS;
}
void showDetections(const vector<Rect>& found, Mat& imageData) {
for (const Rect& rect : found)
{
Point rectPoint1;
rectPoint1.x = rect.x;
rectPoint1.y = rect.y;
Point rectPoint2;
rectPoint2.x = rect.x + rect.width;
rectPoint2.y = rect.y + rect.height;
std::cout << "detection x: " << rect.x << ", y: " << rect.y << std::endl;
rectangle(imageData, rectPoint1, rectPoint2, Scalar(0, 255, 0));
}
}
void detectTest(const HOGDescriptor& hog, Mat& imageData)
{
std::cout << "Trying to detect" << std::endl;
vector<Rect> found;
int groupThreshold = 2;
Size padding(Size(32, 32));
Size winStride(Size(8, 8));
double hitThreshold = 0.; // tolerance
hog.detectMultiScale(imageData, found, hitThreshold, winStride, padding, 1.05, groupThreshold);
// hog.detectMultiScale(imageData, found);
std::cout << "Trying to show detections" << std::endl;
showDetections(found, imageData);
}
XML:
<?xml version="1.0"?>
<opencv_storage>
<my_svm type_id="opencv-ml-svm">
<svm_type>C_SVC</svm_type>
<kernel><type>LINEAR</type></kernel>
<C>1.</C>
<term_criteria><epsilon>2.2204460492503131e-16</epsilon>
<iterations>10000</iterations></term_criteria>
<var_all>8192</var_all>
<var_count>8192</var_count>
<class_count>2</class_count>
<class_labels type_id="opencv-matrix">
<rows>1</rows>
<cols>2</cols>
<dt>i</dt>
<data>
-1 1</data></class_labels>
<sv_total>1</sv_total>
<support_vectors>
<_>
-9.25376153e-05 -9.25376153e-05 -9.25376153e-05 -9.25376153e-05 ...and many, many...</_></support_vectors>
<decision_functions>
<_>
<sv_count>1</sv_count>
<rho>-1.</rho>
<alpha>
1.</alpha>
<index>
0</index></_></decision_functions></my_svm>
</opencv_storage>
有人可以解釋我這個斷言,或者可以提供一些soluti對這個問題?我花了近3天的時間來解決這個問題,但沒有取得任何成功......提前致謝!