0
的數據可以發現hereR:錯誤與內爾德 - 米德優化選擇初始值
library(nlme)
library(dfoptim)
dat0 <- read.table("aids.dat2",head=T)
dat1 <- dat0[dat0$day<=90, ] # use only first 90-day data
dat2 <- dat1[!apply(is.na(dat1),1,any),] # remove missing data
aids.dat <- groupedData(lgcopy ~ day | patid, data=dat2)
aids.dat$log10copy = log10(aids.dat$lgcopy)
myfun2 <- function(arg){
s.p1 <- arg[1]
s.b1 <- arg[2]
s.p2 <- arg[3]
s.b2 <- arg[4]
model = nlme(log10copy ~ exp(p1-b1*day) + exp(p2-b2*day),
fixed = list(p1 ~ 1, b1 ~ 1, p2 ~ 1, b2 ~ 1),
random = list(patid = pdDiag(list(p1 ~ 1, b1 ~ 1, p2 ~ 1, b2 ~ 1))),
start = list(fixed = c(p1 = s.p1, b1 = s.b1, p2 = s.p2, b2 = s.b2)),
data =aids.dat)
return(model$logLik)
}
nmkb(fn = myfun2, par = c(10,0.5,6,0.005), lower = c(5, 0.1, 5, 0.001), upper = c(15, 1, 10, 0.1))
運行上面的代碼中,我碰到幾個錯誤:
Error in nlme.formula(log10copy ~ exp(p1 - b1 * day) + exp(p2 - b2 * day), :
step halving factor reduced below minimum in PNLS step
In addition: Warning message:
In nlme.formula(log10copy ~ exp(p1 - b1 * day) + exp(p2 - b2 * day), :
Singular precision matrix in level -1, block 1
的模型擬合精與從par = c(10,0.5,6,0.005)
盯着值。不過,我認爲隨着隨機算法開始使用lower = c(5, 0.1, 5, 0.001), upper = c(15, 1, 10, 0.1)
中的其他起始值,nlme
調用會遇到上述問題,因爲它對起始值非常敏感。結果,nmkb
調用從不算什麼。
有沒有辦法規避這種情況?