最好的解決辦法是下降的類型和可變數組和存儲在普通表的一切。
如果這不是一個選項,您可以通過將VARRAY封裝在對象類型中並通過成員函數訪問元素來顯着提高性能。這種方法比VARRAY的結果旋轉速度快幾倍。
下面的代碼有點痛苦,但它是一個具有100,000個樣本行的20列全功能測試。
示例模式與VARRAY
CREATE TYPE point_t AS object(
x number(6,0),
y number(6,0)
);
-- Graph can contain up to 20 points, no more
CREATE TYPE graph_t AS VARRAY(20) OF point_t;
-- Customer graphs
create table customer_graphs (customer_id number(9,0), graph graph_t);
--100K rows, 5.2 seconds.
begin
for i in 1 .. 100000 loop
insert into customer_graphs values(i, graph_t(point_t(1,1),point_t(2,2),point_t(3,3),point_t(4,4),point_t(5,5),point_t(6,6),point_t(7,7),point_t(8,8),point_t(9,9),point_t(10,10),point_t(11,11),point_t(12,12),point_t(13,13),point_t(14,14),point_t(15,15),point_t(16,16),point_t(17,17),point_t(18,18),point_t(19,19),point_t(20,20)));
end loop;
commit;
end;
/
begin
dbms_stats.gather_table_stats(user, 'CUSTOMER_GRAPHS');
end;
/
示例模式與對象包含VARRAY
--Create type to store and access graph and X and Y elements.
create or replace type graph_obj as object
(
graph graph_t,
member function x(p_index number) return number,
member function y(p_index number) return number
);
create or replace type body graph_obj is
member function x(p_index number) return number is
begin
return graph(p_index).x;
end;
member function y(p_index number) return number is
begin
return graph(p_index).y;
end;
end;
/
-- Customer graphs 2
create table customer_graphs2(customer_id number(9,0), graph graph_obj);
--100K rows, 5.54 seconds.
begin
for i in 1 .. 100000 loop
insert into customer_graphs2 values(i, graph_obj(graph_t(point_t(1,1),point_t(2,2),point_t(3,3),point_t(4,4),point_t(5,5),point_t(6,6),point_t(7,7),point_t(8,8),point_t(9,9),point_t(10,10),point_t(11,11),point_t(12,12),point_t(13,13),point_t(14,14),point_t(15,15),point_t(16,16),point_t(17,17),point_t(18,18),point_t(19,19),point_t(20,20))));
end loop;
commit;
end;
/
begin
dbms_stats.gather_table_stats(user, 'CUSTOMER_GRAPHS2');
end;
/
VARRAY PIVOT性能
前N行 - 4.5秒。
select customer_id,
max(CASE rn WHEN 1 THEN x END) x_1, max(CASE rn WHEN 1 THEN y END) y_1, max(CASE rn WHEN 2 THEN x END) x_2, max(CASE rn WHEN 2 THEN y END) y_2, max(CASE rn WHEN 3 THEN x END) x_3, max(CASE rn WHEN 3 THEN y END) y_3, max(CASE rn WHEN 4 THEN x END) x_4, max(CASE rn WHEN 4 THEN y END) y_4, max(CASE rn WHEN 5 THEN x END) x_5, max(CASE rn WHEN 5 THEN y END) y_5, max(CASE rn WHEN 6 THEN x END) x_6, max(CASE rn WHEN 6 THEN y END) y_6, max(CASE rn WHEN 7 THEN x END) x_7, max(CASE rn WHEN 7 THEN y END) y_7, max(CASE rn WHEN 8 THEN x END) x_8, max(CASE rn WHEN 8 THEN y END) y_8, max(CASE rn WHEN 9 THEN x END) x_9, max(CASE rn WHEN 9 THEN y END) y_9, max(CASE rn WHEN 10 THEN x END) x_10, max(CASE rn WHEN 10 THEN y END) y_10, max(CASE rn WHEN 11 THEN x END) x_11, max(CASE rn WHEN 11 THEN y END) y_11, max(CASE rn WHEN 12 THEN x END) x_12, max(CASE rn WHEN 12 THEN y END) y_12, max(CASE rn WHEN 13 THEN x END) x_13, max(CASE rn WHEN 13 THEN y END) y_13, max(CASE rn WHEN 14 THEN x END) x_14, max(CASE rn WHEN 14 THEN y END) y_14, max(CASE rn WHEN 15 THEN x END) x_15, max(CASE rn WHEN 15 THEN y END) y_15, max(CASE rn WHEN 16 THEN x END) x_16, max(CASE rn WHEN 16 THEN y END) y_16, max(CASE rn WHEN 17 THEN x END) x_17, max(CASE rn WHEN 17 THEN y END) y_17, max(CASE rn WHEN 18 THEN x END) x_18, max(CASE rn WHEN 18 THEN y END) y_18, max(CASE rn WHEN 19 THEN x END) x_19, max(CASE rn WHEN 19 THEN y END) y_19, max(CASE rn WHEN 20 THEN x END) x_20, max(CASE rn WHEN 20 THEN y END) y_20
from (
select cg.customer_id, g.*, row_number() over(partition by cg.customer_id order by g.x) rn
from
customer_graphs cg,
TABLE(cg.graph) g
)
group by customer_id;
所有行 - 17秒
select sum(x_1) x
from
(
select customer_id,
max(CASE rn WHEN 1 THEN x END) x_1, max(CASE rn WHEN 1 THEN y END) y_1, max(CASE rn WHEN 2 THEN x END) x_2, max(CASE rn WHEN 2 THEN y END) y_2, max(CASE rn WHEN 3 THEN x END) x_3, max(CASE rn WHEN 3 THEN y END) y_3, max(CASE rn WHEN 4 THEN x END) x_4, max(CASE rn WHEN 4 THEN y END) y_4, max(CASE rn WHEN 5 THEN x END) x_5, max(CASE rn WHEN 5 THEN y END) y_5, max(CASE rn WHEN 6 THEN x END) x_6, max(CASE rn WHEN 6 THEN y END) y_6, max(CASE rn WHEN 7 THEN x END) x_7, max(CASE rn WHEN 7 THEN y END) y_7, max(CASE rn WHEN 8 THEN x END) x_8, max(CASE rn WHEN 8 THEN y END) y_8, max(CASE rn WHEN 9 THEN x END) x_9, max(CASE rn WHEN 9 THEN y END) y_9, max(CASE rn WHEN 10 THEN x END) x_10, max(CASE rn WHEN 10 THEN y END) y_10, max(CASE rn WHEN 11 THEN x END) x_11, max(CASE rn WHEN 11 THEN y END) y_11, max(CASE rn WHEN 12 THEN x END) x_12, max(CASE rn WHEN 12 THEN y END) y_12, max(CASE rn WHEN 13 THEN x END) x_13, max(CASE rn WHEN 13 THEN y END) y_13, max(CASE rn WHEN 14 THEN x END) x_14, max(CASE rn WHEN 14 THEN y END) y_14, max(CASE rn WHEN 15 THEN x END) x_15, max(CASE rn WHEN 15 THEN y END) y_15, max(CASE rn WHEN 16 THEN x END) x_16, max(CASE rn WHEN 16 THEN y END) y_16, max(CASE rn WHEN 17 THEN x END) x_17, max(CASE rn WHEN 17 THEN y END) y_17, max(CASE rn WHEN 18 THEN x END) x_18, max(CASE rn WHEN 18 THEN y END) y_18, max(CASE rn WHEN 19 THEN x END) x_19, max(CASE rn WHEN 19 THEN y END) y_19, max(CASE rn WHEN 20 THEN x END) x_20, max(CASE rn WHEN 20 THEN y END) y_20
from (
select cg.customer_id, g.*, row_number() over(partition by cg.customer_id order by g.x) rn
from
customer_graphs cg,
TABLE(cg.graph) g
)
group by customer_id
);
對象性能
前N行 - 0.4秒
select cg.customer_id, cg.graph.x(1) x_1, cg.graph.y(1) y_1, cg.graph.x(2) x_2, cg.graph.y(2) y_2, cg.graph.x(3) x_3, cg.graph.y(3) y_3, cg.graph.x(4) x_4, cg.graph.y(4) y_4, cg.graph.x(5) x_5, cg.graph.y(5) y_5, cg.graph.x(6) x_6, cg.graph.y(6) y_6, cg.graph.x(7) x_7, cg.graph.y(7) y_7, cg.graph.x(8) x_8, cg.graph.y(8) y_8, cg.graph.x(9) x_9, cg.graph.y(9) y_9, cg.graph.x(10) x_10, cg.graph.y(10) y_10, cg.graph.x(11) x_11, cg.graph.y(11) y_11, cg.graph.x(12) x_12, cg.graph.y(12) y_12, cg.graph.x(13) x_13, cg.graph.y(13) y_13, cg.graph.x(14) x_14, cg.graph.y(14) y_14, cg.graph.x(15) x_15, cg.graph.y(15) y_15, cg.graph.x(16) x_16, cg.graph.y(16) y_16, cg.graph.x(17) x_17, cg.graph.y(17) y_17, cg.graph.x(18) x_18, cg.graph.y(18) y_18, cg.graph.x(19) x_19, cg.graph.y(19) y_19, cg.graph.x(20) x_20, cg.graph.y(20) y_20
from customer_graphs2 cg;
所有行 - 2。5秒
select sum(x_1)
from
(
select cg.customer_id, cg.graph.x(1) x_1, cg.graph.y(1) y_1, cg.graph.x(2) x_2, cg.graph.y(2) y_2, cg.graph.x(3) x_3, cg.graph.y(3) y_3, cg.graph.x(4) x_4, cg.graph.y(4) y_4, cg.graph.x(5) x_5, cg.graph.y(5) y_5, cg.graph.x(6) x_6, cg.graph.y(6) y_6, cg.graph.x(7) x_7, cg.graph.y(7) y_7, cg.graph.x(8) x_8, cg.graph.y(8) y_8, cg.graph.x(9) x_9, cg.graph.y(9) y_9, cg.graph.x(10) x_10, cg.graph.y(10) y_10, cg.graph.x(11) x_11, cg.graph.y(11) y_11, cg.graph.x(12) x_12, cg.graph.y(12) y_12, cg.graph.x(13) x_13, cg.graph.y(13) y_13, cg.graph.x(14) x_14, cg.graph.y(14) y_14, cg.graph.x(15) x_15, cg.graph.y(15) y_15, cg.graph.x(16) x_16, cg.graph.y(16) y_16, cg.graph.x(17) x_17, cg.graph.y(17) y_17, cg.graph.x(18) x_18, cg.graph.y(18) y_18, cg.graph.x(19) x_19, cg.graph.y(19) y_19, cg.graph.x(20) x_20, cg.graph.y(20) y_20
from customer_graphs2 cg
);
謝謝您的時間和有趣的想法。你的回答幫助我找到了一個性能問題的真正罪魁禍首。原來是其他pl/sql函數消耗了35%的查詢消耗時間。我查看了graph_obj成員函數,並意識到它們與原始pl/sql函數基本相同,並且證明了您的方法是高效的。非常感謝你的幫助!一旦我修復了其他的pl/sql函數,很明顯關鍵的方法比pl/sql或object更快。附:我發佈了一個答案,因爲我無法將我的發現納入評論。 – Vladimir