[更新以適應現代pandas
,其中有isnull
爲DataFrame
個方法..]
您可以使用isnull
和any
建立一個布爾系列,並用它來索引你的框架:
>>> df = pd.DataFrame([range(3), [0, np.NaN, 0], [0, 0, np.NaN], range(3), range(3)])
>>> df.isnull()
0 1 2
0 False False False
1 False True False
2 False False True
3 False False False
4 False False False
>>> df.isnull().any(axis=1)
0 False
1 True
2 True
3 False
4 False
dtype: bool
>>> df[df.isnull().any(axis=1)]
0 1 2
1 0 NaN 0
2 0 0 NaN
[對於舊pandas
:]
你可以使用的功能,而不是isnull
方法:
In [56]: df = pd.DataFrame([range(3), [0, np.NaN, 0], [0, 0, np.NaN], range(3), range(3)])
In [57]: df
Out[57]:
0 1 2
0 0 1 2
1 0 NaN 0
2 0 0 NaN
3 0 1 2
4 0 1 2
In [58]: pd.isnull(df)
Out[58]:
0 1 2
0 False False False
1 False True False
2 False False True
3 False False False
4 False False False
In [59]: pd.isnull(df).any(axis=1)
Out[59]:
0 False
1 True
2 True
3 False
4 False
導致相當緊湊:
In [60]: df[pd.isnull(df).any(axis=1)]
Out[60]:
0 1 2
1 0 NaN 0
2 0 0 NaN
來源
2013-01-09 22:33:07
DSM