2011-04-24 58 views
6

雖然看着belisarius的問題generation of non-singular integer matrices with uniform distribution of its elements,我正在研究Dana Randal的論文「Efficient generation of random non-singular matrices」。所提出的算法是遞歸的,並涉及生成較低維的矩陣並將其分配給給定的次要。我使用InsertTranspose的組合來做到這一點,但是必須有更有效的方法來做到這一點。你會怎麼做?如何在Mathematica中有效地設置矩陣的次要?

以下是代碼:

Clear[Gen]; 
Gen[p_, 1] := {{{1}}, RandomInteger[{1, p - 1}, {1, 1}]}; 
Gen[p_, n_] := Module[{v, r, aa, tt, afr, am, tm}, 
    While[True, 
    v = RandomInteger[{0, p - 1}, n]; 
    r = LengthWhile[v, # == 0 &] + 1; 
    If[r <= n, Break[]] 
    ]; 
    afr = UnitVector[n, r]; 
    {am, tm} = Gen[p, n - 1]; 
    {Insert[ 
    Transpose[ 
    Insert[Transpose[am], RandomInteger[{0, p - 1}, n - 1], r]], afr, 
    1], Insert[ 
    Transpose[Insert[Transpose[tm], ConstantArray[0, n - 1], r]], v, 
    r]} 
    ] 

NonSingularRandomMatrix[p_?PrimeQ, n_] := Mod[Dot @@ Gen[p, n], p] 

它確實生成非奇異矩陣,且具有矩陣元素的均勻分佈,但需要p來是素數:

histogram of matrix element (2, 3)

代碼也並不是每一個有效的,這一點,我對我的低效矩陣構造懷疑是由於:

In[10]:= Timing[NonSingularRandomMatrix[101, 300];] 

Out[10]= {0.421, Null} 


編輯所以讓我來濃縮我的問題。一個給定的矩陣 m的次矩陣可以計算如下:

MinorMatrix[m_?MatrixQ, {i_, j_}] := 
Drop[Transpose[Drop[Transpose[m], {j}]], {i}] 

它與i行和第刪除j列對應的原始矩陣。

我現在需要創建一個大小爲n的矩陣n,它將在位置{i,j}處具有給定的次矩陣mm。我在算法中使用是:

ExpandMinor[minmat_, {i_, j_}, v1_, 
    v2_] /; {Length[v1] - 1, Length[v2]} == Dimensions[minmat] := 
Insert[Transpose[Insert[Transpose[minmat], v2, j]], v1, i] 

例子:

In[31]:= ExpandMinor[ 
IdentityMatrix[4], {2, 3}, {1, 2, 3, 4, 5}, {2, 3, 4, 4}] 

Out[31]= {{1, 0, 2, 0, 0}, {1, 2, 3, 4, 5}, {0, 1, 3, 0, 0}, {0, 0, 4, 
    1, 0}, {0, 0, 4, 0, 1}} 

我希望這可以更有效地完成,這是我的問題,我拉客。


每blisarius的建議,我看着通過ArrayFlatten實施ExpandMinor

Clear[ExpandMinorAlt]; 
ExpandMinorAlt[m_, {i_ /; i > 1, j_}, v1_, 
    v2_] /; {Length[v1] - 1, Length[v2]} == Dimensions[m] := 
ArrayFlatten[{ 
    {Part[m, ;; i - 1, ;; j - 1], [email protected]{v2[[;; i - 1]]}, 
    Part[m, ;; i - 1, j ;;]}, 
    {{v1[[;; j - 1]]}, {{v1[[j]]}}, {v1[[j + 1 ;;]]}}, 
    {Part[m, i ;;, ;; j - 1], [email protected]{v2[[i ;;]]}, Part[m, i ;;, j ;;]} 
    }] 

ExpandMinorAlt[m_, {1, j_}, v1_, 
    v2_] /; {Length[v1] - 1, Length[v2]} == Dimensions[m] := 
ArrayFlatten[{ 
    {{v1[[;; j - 1]]}, {{v1[[j]]}}, {v1[[j + 1 ;;]]}}, 
    {Part[m, All, ;; j - 1], [email protected]{v2}, Part[m, All, j ;;]} 
    }] 

In[192]:= dim = 5; 
mm = RandomInteger[{-5, 5}, {dim, dim}]; 
v1 = RandomInteger[{-5, 5}, dim + 1]; 
v2 = RandomInteger[{-5, 5}, dim]; 

In[196]:= 
Table[ExpandMinor[mm, {i, j}, v1, v2] == 
    ExpandMinorAlt[mm, {i, j}, v1, v2], {i, dim}, {j, dim}] // 
    Flatten // DeleteDuplicates 

Out[196]= {True} 
+0

對不起,我今天懶惰:)。 Minor就像這樣http://en.wikipedia.org/wiki/Minor_(linear_algebra)#Example,不是嗎? – 2011-04-24 16:58:22

+0

@belisarius該頁面的未成年人是我所談論的內容的決定因素。我將編輯我的帖子來解釋更多。 – Sasha 2011-04-24 17:14:02

+0

可能相關http://stackoverflow.com/questions/4270802/inserting-into-a-2d-list – 2011-04-24 18:02:05

回答

6

我花了一段時間來這裏,但因爲我度過了我的博士後生成隨機矩陣的很大一部分,我不能幫助它,所以這裏去。代碼中主要的低效率來自移動矩陣(複製它們)的必要性。如果我們能重新制定算法使我們只修改代替單個矩陣,我們可以取得大勝。爲此,我們必須計算,其中所插入的載體/行將結束的位置,因爲我們將典型地在更小的矩陣的中間插入,從而移動的元素。這個有可能。下面是代碼:

gen = Compile[{{p, _Integer}, {n, _Integer}}, 
Module[{vmat = Table[0, {n}, {n}], 
    rs = Table[0, {n}],(* A vector of r-s*) 
    amatr = Table[0, {n}, {n}], 
    tmatr = Table[0, {n}, {n}], 
    i = 1, 
    v = Table[0, {n}], 
    r = n + 1, 
    rsc = Table[0, {n}], (* recomputed r-s *) 
    matstarts = Table[0, {n}], (* Horizontal positions of submatrix starts at a given step *)  
    remainingShifts = Table[0, {n}] 
     (* 
     ** shifts that will be performed after a given row/vector insertion, 
     ** and can affect the real positions where the elements will end up 
     *) 
}, 
(* 
** Compute the r-s and vectors v all at once. Pad smaller 
** vectors v with zeros to fill a rectangular matrix 
*) 
For[i = 1, i <= n, i++, 
While[True, 
    v = RandomInteger[{0, p - 1}, i]; 
    For[r = 1, r <= i && v[[r]] == 0, r++]; 
    If[r <= i, 
    vmat[[i]] = PadRight[v, n]; 
    rs[[i]] = r; 
    Break[]] 
    ]]; 
(* 
** We must recompute the actual r-s, since the elements will 
** move due to subsequent column insertions. 
** The code below repeatedly adds shifts to the 
** r-s on the left, resulting from insertions on the right. 
** For example, if vector of r-s 
** is {1,2,1,3}, it will become {1,2,1,3}->{2,3,1,3}->{2,4,1,3}, 
** and the end result shows where 
** in the actual matrix the columns (and also rows for the case of 
** tmatr) will be inserted 
*) 
rsc = rs; 
For[i = 2, i <= n, i++, 
    remainingShifts = Take[rsc, i - 1]; 
    For[r = 1, r <= i - 1, r++, 
    If[remainingShifts[[r]] == rsc[[i]], 
    Break[] 
    ] 
    ]; 
    If[ r <= n, 
    rsc[[;; i - 1]] += UnitStep[rsc[[;; i - 1]] - rsc[[i]]] 
    ] 
]; 
(* 
    ** Compute the starting left positions of sub- 
    ** matrices at each step (1x1,2x2,etc) 
*) 
matstarts = FoldList[Min, [email protected], [email protected]]; 
(* Initialize matrices - this replaces the recursion base *) 
amatr[[n, rsc[[1]]]] = 1; 
tmatr[[rsc[[1]], rsc[[1]]]] = RandomInteger[{1, p - 1}]; 
(* Repeatedly perform insertions - this replaces recursion *) 
For[i = 2, i <= n, i++, 
    amatr[[n - i + 2 ;; n, rsc[[i]]]] = RandomInteger[{0, p - 1}, i - 1]; 
    amatr[[n - i + 1, rsc[[i]]]] = 1; 
    tmatr[[n - i + 2 ;; n, rsc[[i]]]] = Table[0, {i - 1}]; 
    tmatr[[rsc[[i]], 
    Fold[# + 1 - Unitize[# - #2] &, 
     matstarts[[i]] + Range[0, i - 1], Sort[Drop[rsc, i]]]]] = 
      vmat[[i, 1 ;; i]];  
]; 
{amatr, tmatr} 
], 
{{FoldList[__], _Integer, 1}}, CompilationTarget -> "C"]; 

NonSignularRanomMatrix[p_?PrimeQ, n_] := Mod[Dot @@ Gen[p, n],p]; 
NonSignularRanomMatrixAlt[p_?PrimeQ, n_] := Mod[Dot @@ gen[p, n],p]; 

這裏被用於大矩陣的定時:

In[1114]:= gen [101, 300]; // Timing 

Out[1114]= {0.078, Null} 

對於直方圖時,得到相同的圖,和10倍效率升壓:

In[1118]:= 
    Histogram[Table[NonSignularRanomMatrix[11, 5][[2, 3]], {10^4}]]; // Timing 

Out[1118]= {7.75, Null} 

In[1119]:= 
Histogram[Table[NonSignularRanomMatrixAlt[11, 5][[2, 3]], {10^4}]]; // Timing 

Out[1119]= {0.687, Null} 

我希望仔細分析上面的編譯代碼,可以進一步提高性能。另外,我沒有在Compile中使用運行時Listable屬性,但這應該是可能的。也可能是執行賦值給未成年人的代碼部分是足夠通用的,這樣邏輯可以被分解出主函數 - 我還沒有調查過。

+1

@Leonid請注意'Compile'內不支持'ConstantArray',並生成對評估者的調用。當用等效的「表」調用代碼時,速度增加約5%。我將詳細研究代碼。請在您方便的時候更新代碼,並且在我的編輯中添加了「Mod」調用,更新了'NonSignularRanomMatrix'和'NonSignularRanomMatrixAlt'的定義,因爲我錯過了。謝謝。 – Sasha 2011-04-25 00:15:23

+0

@belisarius這篇文章談到了有限域中的世代,我忘記了最後的模塊化約簡。一旦它被應用,並且我更新了我的原始代碼,矩陣元素確實是均勻分佈的。現在使用Leonid的高性能代碼,您可以考慮將它用於您的過濾算法。 – Sasha 2011-04-25 01:08:05

+0

@Leonid非常好的作品! – Sasha 2011-04-25 03:51:54

2

對於你的問題的第一部分(我希望我的理解正確),可以 MinorMatrix可以寫成?

MinorMatrixAlt[m_?MatrixQ, {i_, j_}] := Drop[mat, {i}, {j}] 
+0

是的,它可以。 – Sasha 2011-04-24 18:59:34

相關問題