你第二個問題開始,流量有精度/召回曲線(它是互動)。流程始終在每個節點的端口54321上運行,如果您在本地運行h2o,則流程爲http://127.0.0.1:54321
。
我想你的數據或模型有一些有趣的地方,當你看到精度/回憶曲線時,它將變得清晰。
在R如果你這樣做str(m)
(其中m
是你的型號),你會看到所有的模型數據。 [email protected][email protected]$thresholds_and_metric_scores$recall
保存每個閾值的召回號碼。
我無法弄清楚如何查看Python對象,但是你的調用是正確的。在我的快速測試(有2類ENUM列虹膜數據集添加):
m.metric("recall")
了:
[[0.8160852636726422, 1.0]]
如果我想所有的值,這將是這樣的:
mDL.metric("recall",thresholds=[x/100.0 for x in range(1,100)])
,並提供:
Could not find exact threshold 0.01; using closest threshold found 0.010396965719556233.
Could not find exact threshold 0.02; using closest threshold found 0.016617060110009896.
...
Could not find exact threshold 0.92; using closest threshold found 0.9469528904679438.
Could not find exact threshold 0.93; using closest threshold found 0.9469528904679438.
Could not find exact threshold 0.94; using closest threshold found 0.9469528904679438.
Could not find exact threshold 0.95; using closest threshold found 0.9469528904679438.
Could not find exact threshold 0.96; using closest threshold found 0.9469528904679438.
Could not find exact threshold 0.97; using closest threshold found 0.9760293572153097.
Could not find exact threshold 0.98; using closest threshold found 0.9787491606489236.
Could not find exact threshold 0.99; using closest threshold found 0.9909817370067531.
[[0.01, 1.0],
[0.02, 1.0],
[0.03, 1.0],
...
[0.87, 1.0],
[0.88, 1.0],
[0.89, 0.9850746268656716],
[0.9, 0.9850746268656716],
[0.91, 0.9850746268656716],
[0.92, 0.9850746268656716],
[0.93, 0.9850746268656716],
[0.94, 0.9850746268656716],
[0.95, 0.9850746268656716],
[0.96, 0.9850746268656716],
[0.97, 0.9701492537313433],
[0.98, 0.9552238805970149],
[0.99, 0.8955223880597015]]
(我得到如此不尋常的輸出,因爲它學到了我的數據集幾乎完美 - 我懷疑這是發生在你身上?)(我愚蠢地讓我的二進制列成爲輸入列之一的直接函數,沒有噪聲!)
請不要與郵件列表交叉發佈。(StackOverflow對於這類問題來說是更好的選擇。) –