大廈@ konvas的答案,使用ggproto
系統和定義自己的統計中ggplot2.0.x
,可以extend ggplot開始。
通過複製GGPLOT2 stat_boxplot
代碼,並進行了一些修改,您可以快速定義一個新的STAT(stat_boxplot_custom
),把你想作爲一個參數(qs
),而不是coef
論點stat_boxplot
用途使用百分位數。新定義如下:
# modified from https://github.com/tidyverse/ggplot2/blob/master/R/stat-boxplot.r
library(ggplot2)
stat_boxplot_custom <- function(mapping = NULL, data = NULL,
geom = "boxplot", position = "dodge",
...,
qs = c(.05, .25, 0.5, 0.75, 0.95),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
layer(
data = data,
mapping = mapping,
stat = StatBoxplotCustom,
geom = geom,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
qs = qs,
...
)
)
}
然後,定義圖層函數。請注意,我直接從stat_boxplot
複製了B/C,您必須使用:::
訪問一些內部ggplot2函數。這包括從StatBoxplot
直接複製的大量內容,但關鍵區域是直接根據compute_group
函數內的qs
參數:stats <- as.numeric(stats::quantile(data$y, qs))
計算統計信息。
StatBoxplotCustom <- ggproto("StatBoxplotCustom", Stat,
required_aes = c("x", "y"),
non_missing_aes = "weight",
setup_params = function(data, params) {
params$width <- ggplot2:::"%||%"(
params$width, (resolution(data$x) * 0.75)
)
if (is.double(data$x) && !ggplot2:::has_groups(data) && any(data$x != data$x[1L])) {
warning(
"Continuous x aesthetic -- did you forget aes(group=...)?",
call. = FALSE
)
}
params
},
compute_group = function(data, scales, width = NULL, na.rm = FALSE, qs = c(.05, .25, 0.5, 0.75, 0.95)) {
if (!is.null(data$weight)) {
mod <- quantreg::rq(y ~ 1, weights = weight, data = data, tau = qs)
stats <- as.numeric(stats::coef(mod))
} else {
stats <- as.numeric(stats::quantile(data$y, qs))
}
names(stats) <- c("ymin", "lower", "middle", "upper", "ymax")
iqr <- diff(stats[c(2, 4)])
outliers <- (data$y < stats[1]) | (data$y > stats[5])
if (length(unique(data$x)) > 1)
width <- diff(range(data$x)) * 0.9
df <- as.data.frame(as.list(stats))
df$outliers <- list(data$y[outliers])
if (is.null(data$weight)) {
n <- sum(!is.na(data$y))
} else {
# Sum up weights for non-NA positions of y and weight
n <- sum(data$weight[!is.na(data$y) & !is.na(data$weight)])
}
df$notchupper <- df$middle + 1.58 * iqr/sqrt(n)
df$notchlower <- df$middle - 1.58 * iqr/sqrt(n)
df$x <- if (is.factor(data$x)) data$x[1] else mean(range(data$x))
df$width <- width
df$relvarwidth <- sqrt(n)
df
}
)
還有一個gist here,包含此代碼。
然後,stat_boxplot_custom
可以稱得上就像stat_boxplot
:
library(ggplot2)
y <- rnorm(100)
df <- data.frame(x = 1, y = y)
# whiskers extend to 5/95th percentiles by default
ggplot(df, aes(x = x, y = y)) +
stat_boxplot_custom()
# or extend the whiskers to min/max
ggplot(df, aes(x = x, y = y)) +
stat_boxplot_custom(qs = c(0, 0.25, 0.5, 0.75, 1))
kohske,這確實改變晶須(謝謝!),但異常消失。 – cswingle 2011-01-22 01:49:12
該示例已更新:有多種方法可以完成此操作,但也許這是在geom_point中繪製異常值的最簡單方法。 – kohske 2011-01-22 02:11:29