2017-07-04 99 views
1

我建立了一個convNN來分類一大堆圖像,首先精度非常差(低於6%),無論我在網絡中發生了什麼變化。所以我認爲問題在於我閱讀圖像的方式。更改後的代碼這部分,我得到一些無法解釋的結果: enter image description hereConvNN Tensorflow奇怪的準確性結果

我想我使用批處理的方式有問題,所以我是我使用的代碼,爲:

def getImage(filename): 
    with tf.device('/cpu:0'): 
     # convert filenames to a queue for an input pipeline. 
     filenameQ = tf.train.string_input_producer([filename],num_epochs=None) 
    # object to read records 
    recordReader = tf.TFRecordReader() 

    # read the full set of features for a single example 
    key, fullExample = recordReader.read(filenameQ) 

    # parse the full example into its' component features. 
    features = tf.parse_single_example(
     fullExample, 
     features={ 
      'image/height': tf.FixedLenFeature([], tf.int64), 
      'image/width': tf.FixedLenFeature([], tf.int64), 
      'image/colorspace': tf.FixedLenFeature([], dtype=tf.string,default_value=''), 
      'image/channels': tf.FixedLenFeature([], tf.int64), 
      'image/class/label': tf.FixedLenFeature([],tf.int64), 
      'image/class/text': tf.FixedLenFeature([], dtype=tf.string,default_value=''), 
      'image/format': tf.FixedLenFeature([], dtype=tf.string,default_value=''), 
      'image/filename': tf.FixedLenFeature([], dtype=tf.string,default_value=''), 
      'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value='') 
     }) 

    # now we are going to manipulate the label and image features 
    label = features['image/class/label'] 
    image_buffer = features['image/encoded'] 
    # Decode the jpeg 
    with tf.name_scope('decode_img',[image_buffer], None): 
     # decode 
     image = tf.image.decode_png(image_buffer, channels=1) 

     # and convert to single precision data type 
     image = tf.image.convert_image_dtype(image, dtype=tf.float32) 
    # cast image into a single array, where each element corresponds to the greyscale 
    # value of a single pixel. 
    # the "1-.." part inverts the image, so that the background is black. 
    image = tf.reshape(image,[img_height*img_width]) 
    # re-define label as a "one-hot" vector 
    # it will be [0,1] or [1,0] here. 
    # This approach can easily be extended to more classes. 
    label=tf.stack(tf.one_hot(label-1, numberOFclasses)) 
    return image, label 

with tf.device('/cpu:0'): 
    train_img,train_label = getImage(TF_Records+"/TrainRecords") 
    validation_img,validation_label=getImage(TF_Records+"/TestRecords") 
    # associate the "label_batch" and "image_batch" objects with a randomly selected batch--- 
    # of labels and images respectively 
    train_imageBatch, train_labelBatch = tf.train.shuffle_batch([train_img, train_label], batch_size=batchSize,capacity=50,min_after_dequeue=10) 

    # and similarly for the validation data 
    validation_imageBatch, validation_labelBatch = tf.train.shuffle_batch([validation_img, validation_label], 
                batch_size=batchSize,capacity=50,min_after_dequeue=10) 

    # feeding function 
    def feed_dict(train): 
     if True : 
      #img_batch, labels_batch= tf.train.shuffle_batch([train_label,train_img],batch_size=batchSize,capacity=500,min_after_dequeue=200) 
      img_batch , labels_batch = sess.run([ train_labelBatch ,train_imageBatch]) 
      dropoutValue = 0.7 
     else: 
      # img_batch,labels_batch = tf.train.shuffle_batch([validation_label,validation_img],batch_size=batchSize,capacity=500,min_after_dequeue=200) 
      img_batch,labels_batch = sess.run([ validation_labelBatch,validation_imageBatch]) 
      dropoutValue = 1 
     return {x:img_batch,y_:labels_batch,keep_prob:dropoutValue} 

    for i in range(max_numberofiteretion): 
     if i%10 == 0:#Run a Test 
      summary, acc = sess.run([merged,accuracy],feed_dict=feed_dict(False)) 
      test_writer.add_summary(summary,i)# Save to TensorBoard 
     else: # Training 
      if i % 100 == 99: # Record execution stats 
      run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) 
      run_metadata = tf.RunMetadata() 
      summary, _ = sess.run([merged, train_step], 
            feed_dict=feed_dict(True), 
            options=run_options, 
            run_metadata=run_metadata) 
      train_writer.add_run_metadata(run_metadata, 'step%03d' % i) 
      train_writer.add_summary(summary, i) 
      print('Adding run metadata for', i) 
      else: # Record a summary 
      summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True)) 
      train_writer.add_summary(summary, i) 
     # finalise 
     coord.request_stop() 
     coord.join(threads) 
     train_writer.close() 
     test_writer.close() 

任何想法這裏的問題是什麼? 在此先感謝! PS:圖片肯定被加載,我可以看到他們在Tensorboard

回答

1

有一件事我拿起在這裏:

return label, image 

with tf.device('/cpu:0'): 
    train_img,train_label = getImage(TF_Records+"/TrainRecords") 
    validation_img,validation_label=getImage(TF_Records+"/TestRecords") 

看起來在功能get_image()你return label, image,但是當你調用函數你扭轉任務。

+0

這是爲什麼? getImage應該返回批次的訓練/測試,或者第一個元素,這樣tf.train.shufflebatch可以生成一批! – Engine

+0

是的,但看看您返回圖像的順序,然後當您調用該功能時,您調換了訂單 – pypypy

+0

您正確,但我在運行功能中再次交換它們,謝謝 – Engine