0
假設下面的定義(前兩個是從http://www.cis.upenn.edu/~bcpierce/sf/Basics.html採取):證明在小於且小於或等於上NAT
Fixpoint beq_nat (n m : nat) : bool :=
match n with
| O => match m with
| O => true
| S m' => false
end
| S n' => match m with
| O => false
| S m' => beq_nat n' m'
end
end.
Fixpoint ble_nat (n m : nat) : bool :=
match n with
| O => true
| S n' =>
match m with
| O => false
| S m' => ble_nat n' m'
end
end.
Definition blt_nat (n m : nat) : bool :=
if andb (ble_nat n m) (negb (beq_nat n m)) then true else false.
我想證明如下:
Lemma blt_nat_flip0 : forall (x y : nat),
blt_nat x y = false -> ble_nat y x = true.
Lemma blt_nat_flip : forall (x y : nat),
blt_nat x y = false -> beq_nat x y = false -> blt_nat y x = true.
的我能夠得到的最遠是假設blt_nat_flip
,假設blt_nat_flip0
。我花了很多時間,我幾乎在那裏,但總體來看,它似乎比它應該更復雜。任何人對如何證明這兩個引理有更好的想法?
這裏是我的嘗試至今:
Lemma beq_nat_symmetric : forall (x y : nat),
beq_nat x y = beq_nat y x.
Proof.
intros x. induction x.
intros y. simpl. destruct y.
reflexivity. reflexivity.
intros y. simpl. destruct y.
reflexivity.
simpl. apply IHx.
Qed.
Lemma and_negb_false : forall (b1 b2 : bool),
b2 = false -> andb b1 (negb b2) = b1.
Proof.
intros. rewrite -> H. unfold negb. destruct b1.
simpl. reflexivity.
simpl. reflexivity.
Qed.
Lemma blt_nat_flip0 : forall (x y : nat),
blt_nat x y = false -> ble_nat y x = true.
Proof.
intros x.
induction x.
intros. destruct y.
simpl. reflexivity.
simpl. inversion H.
intros. destruct y. simpl. reflexivity.
simpl. rewrite -> IHx. reflexivity.
(* I am giving up for now at this point ... *)
Admitted.
Lemma blt_nat_flip : forall (x y : nat),
blt_nat x y = false -> beq_nat x y = false ->
blt_nat y x = true.
Proof.
intros.
unfold blt_nat.
rewrite -> beq_nat_symmetric. rewrite -> H0.
rewrite -> and_negb_false.
replace (ble_nat y x) with true.
reflexivity.
rewrite -> blt_nat_flip0. reflexivity. apply H. reflexivity.
Qed.
謝謝你的提示。它允許完成證明! – huynhjl