0
在創建和加載.tfrecord文件的情況下我遇到了以下問題:tf.contrib.data.TFRecordDataset無法讀取* .tfrecord
生成dataset.tfrecord文件
的文件夾/ Batch_manager /資產包含了一些*。TIF被用來生成一個dataset.tfrecord文件圖片:
def _save_as_tfrecord(self, path, name):
self.__filename = os.path.join(path, name + '.tfrecord')
writer = tf.python_io.TFRecordWriter(self.__filename)
print('Writing', self.__filename)
for index, img in enumerate(self.load(get_iterator=True, n_images=1)):
img = img[0]
image_raw = img.tostring()
rows = img.shape[0]
cols = img.shape[1]
try:
depth = img.shape[2]
except IndexError:
depth = 1
example = tf.train.Example(features=tf.train.Features(feature={
'height': self._int64_feature(rows),
'width': self._int64_feature(cols),
'depth': self._int64_feature(depth),
'label': self._int64_feature(int(self.target[index])),
'image_raw': self._bytes_feature(image_raw)
}))
writer.write(example.SerializeToString())
writer.close()
從dataset.tfrecord文件中讀取
下一頁我嘗試在那裏的道路走向的dataset.tfrecord文件引導到使用此文件中讀取:
def dataset_input_fn(self, path):
dataset = tf.contrib.data.TFRecordDataset(path)
def parser(record):
keys_to_features = {
"height": tf.FixedLenFeature((), tf.int64, default_value=""),
"width": tf.FixedLenFeature((), tf.int64, default_value=""),
"depth": tf.FixedLenFeature((), tf.int64, default_value=""),
"label": tf.FixedLenFeature((), tf.int64, default_value=""),
"image_raw": tf.FixedLenFeature((), tf.string, default_value=""),
}
print(record)
features = tf.parse_single_example(record, features=keys_to_features)
print(features)
label = features['label']
height = features['height']
width = features['width']
depth = features['depth']
image = tf.decode_raw(features['image_raw'], tf.float32)
image = tf.reshape(image, [height, width, -1])
label = tf.cast(features["label"], tf.int32)
return {"image_raw": image, "height": height, "width": width, "depth":depth, "label":label}
dataset = dataset.map(parser)
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(32)
iterator = dataset.make_one_shot_iterator()
# `features` is a dictionary in which each value is a batch of values for
# that feature; `labels` is a batch of labels.
features = iterator.get_next()
return Features
錯誤消息:
類型錯誤:預期的Int64,STR「而不是「類型」了」。
什麼是錯的這一段代碼?我成功驗證了dataset.tfrecord實際上包含正確的圖像和元數據!
'self.load(...)簡單地'返回可用於在每個圖片基礎加載的迭代器。我'敢肯定,這個問題是要麼是因爲我建'example'變量和寫入的方式來dataset.tfrecord或者進行解析'tf.contrib.data.TFRecordDataset(路徑)的方式'和'的解析器「函數給'.map(func)' –