2017-03-28 91 views
0

其實我試圖從系統1發送訓練數據到系統2,以便我可以在系統2中進行KNN分類。但是我發現難以發送訓練數據非常大。有沒有辦法通過套接字將龐大的數據從一個系統發送到另一個系統。從一個系統發送大量數據到另一個系統

系統1個

import sys 
import time 
import pickle 
from sklearn.datasets import load_files 
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfTransformer 
from socket import socket, gethostbyname, AF_INET, SOCK_DGRAM 

PORT_NUMBER = 5000 
hostName = gethostbyname('0.0.0.0') 
mySocket = socket(AF_INET, SOCK_DGRAM) 
mySocket.bind((hostName, PORT_NUMBER)) 
print ("Test server listening on port {0}".format(PORT_NUMBER)) 

(data,addr) = mySocket.recvfrom(15) 
print data 
mySocket.sendto("Connected...", addr) 

(data,addr) = mySocket.recvfrom(20000000) 
msg=pickle.loads(data) 
twenty_train=msg 

mySocket.sendto("one", addr) 

(data,addr) = mySocket.recvfrom(300000000) 
ms=pickle.loads(data) 
X_train_tfidf=ms 

knn=KNeighborsClassifier(n_neighbors=3) 
clf = knn.fit(X_train_tfidf, twenty_train) 

f=open(sys.argv[1],'r') 
g=f.read() 
ans = g.strip('\n') 
if ans.endswith(' '): 
    ans = ans.rstrip(' ') 
docs_new = [ans] 

mySocket.sendto(ans, addr) 

(data,addr) = mySocket.recvfrom(1000000) 
msg2=pickle.loads(data) 
X_new_tfidf=msg2 

mySocket.sendto("two", addr) 

predicted = clf.predict(X_new_tfidf) 
(data,addr) = mySocket.recvfrom(100000) 
msg3=pickle.loads(data) 
names = msg3 

for doc, category in zip(docs_new, predicted): 
    print('%r => %s' % (doc, names[category])) 

sys.exit() 

系統2

import sys 
import pickle 
import time 
from sklearn.feature_extraction.text import CountVectorizer 
from sklearn.feature_extraction.text import TfidfTransformer 
from sklearn.datasets import load_files 
from sklearn.neighbors import KNeighborsClassifier 
from socket import socket, AF_INET, SOCK_DGRAM 
SERVER_IP = '10.0.8.132' 
PORT_NUMBER = 5000 

print ("Test client sending packets to IP {0}, via      port{1}\n".format(SERVER_IP, PORT_NUMBER)) 

sock = socket(AF_INET, SOCK_DGRAM) 
sock.connect((SERVER_IP,PORT_NUMBER)) 

sock.send("Connecting...") 
(msg,addr) = sock.recvfrom(15) 
print(msg) 

print "The categories are:" 
categories = ['terrorism','jellikettu'] 

print (categories) 
ans='dataset' 
ans = ans.strip('\n') 
if ans.endswith(' '): 
    ans = ans.rstrip(' ') 
twenty_train = load_files(ans, description=None, categories=categories, load_content=True, shuffle=True, encoding='utf-8', decode_error='ignore', random_state=42) 


count_vect = CountVectorizer() 
X_train_counts = count_vect.fit_transform(twenty_train.data) 
sock.sendto(pickle.dumps(twenty_train.target),addr) 
(ms,addr) = sock.recvfrom(2000000) 

tfidf_transformer = TfidfTransformer() 
X_train_tfidf = tfidf_transformer.fit_transform(X_train_counts) 
sock.sendto(pickle.dumps(X_train_tfidf),addr) 

(ans,addr) = sock.recvfrom(2000) 
docs_new=[ans] 

X_new_counts = count_vect.transform(docs_new) 
X_new_tfidf = tfidf_transformer.transform(X_new_counts) 
sock.sendto(pickle.dumps(X_new_tfidf),addr) 
(m,addr) = sock.recvfrom(2000000) 

sock.sendto(pickle.dumps(twenty_train.target_names),addr) 

print >>sys.stderr, 'closing socket' 
sock.close() 

sys.exit() 

錯誤

Traceback (most recent call last): 
    File "cl.py", line 43, in <module> 
    sock.sendto(pickle.dumps(X_train_tfidf),addr) 
socket.error: [Errno 90] Message too long 
+0

不是Python,但請參閱http://stackoverflow.com/questions/9853099/how-to-solve-sending-udp-packet-using-sendto-got-message-too-long – cdarke

回答

1

是。您應該使用一個SOCK_STREAM(TCP)套接字來發送大量數據。使用SOCK_DGRAM(UDP)表示每個消息都是獨立的,並且必須符合UDP數據報的最大大小(略低於64K)。但是,如果您使用TCP會話,則可以傳輸的大小不受限制。

然而,因爲TCP不保留消息邊界,所以需要構造單個消息。這通常是通過在消息前發送某種標題來完成的,以便接收器在解碼之前知道要讀多少。在你的情況下,你需要確保你在調用pickle.loads之前收到一個完整的數據塊。頭部可以像包含剩餘消息長度的單個32位整數一樣簡單。 (或許最好把以二進制讓你知道有多大 [長度]是,你可以做到這一點與struct模塊的packunpack。)

另一種方法是簡單地創建一個全新的連接對於每個要發送的數據塊:即連接,發送所有數據,關閉。這樣,接收器可以直到接收到EOF,然後知道它具有整個數據塊。

相關問題