2017-10-19 56 views
1

我想在Python中運行kNN(k-最近鄰居)算法。訓練測試拆分似乎不能在Python中正常工作?

我使用的嘗試做到這一點可在UCI機器學習庫的數據集:https://archive.ics.uci.edu/ml/datasets/wine

這裏是我使用的代碼:

#1. LIBRARIES 
import os 
import pandas as pd 
import numpy as np 
print os.getcwd() # Prints the working directory 
os.chdir('C:\\file_path') # Provide the path here 

#2. VARIABLES 
variables = pd.read_csv('wines.csv') 
winery = variables['winery'] 
alcohol = variables['alcohol'] 
malic = variables['malic'] 
ash = variables['ash'] 
ash_alcalinity = variables['ash_alcalinity'] 
magnesium = variables['magnesium'] 
phenols = variables['phenols'] 
flavanoids = variables['flavanoids'] 
nonflavanoids = variables['nonflavanoids'] 
proanthocyanins = variables['proanthocyanins'] 
color_intensity = variables['color_intensity'] 
hue = variables['hue'] 
od280 = variables['od280'] 
proline = variables['proline'] 

#3. MAX-MIN NORMALIZATION 
alcoholscaled=(alcohol-min(alcohol))/(max(alcohol)-min(alcohol)) 
malicscaled=(malic-min(malic))/(max(malic)-min(malic)) 
ashscaled=(ash-min(ash))/(max(ash)-min(ash)) 
ash_alcalinity_scaled=(ash_alcalinity-min(ash_alcalinity))/(max(ash_alcalinity)-min(ash_alcalinity)) 
magnesiumscaled=(magnesium-min(magnesium))/(max(magnesium)-min(magnesium)) 
phenolsscaled=(phenols-min(phenols))/(max(phenols)-min(phenols)) 
flavanoidsscaled=(flavanoids-min(flavanoids))/(max(flavanoids)-min(flavanoids)) 
nonflavanoidsscaled=(nonflavanoids-min(nonflavanoids))/(max(nonflavanoids)-min(nonflavanoids)) 
proanthocyaninsscaled=(proanthocyanins-min(proanthocyanins))/(max(proanthocyanins)-min(proanthocyanins)) 
color_intensity_scaled=(color_intensity-min(color_intensity))/(max(color_intensity)-min(color_intensity)) 
huescaled=(hue-min(hue))/(max(hue)-min(hue)) 
od280scaled=(od280-min(od280))/(max(od280)-min(od280)) 
prolinescaled=(proline-min(proline))/(max(proline)-min(proline)) 
alcoholscaled.mean() 
alcoholscaled.median() 
alcoholscaled.min() 
alcoholscaled.max() 

#4. DATA FRAME 
d = {'alcoholscaled' : pd.Series([alcoholscaled]), 
'malicscaled' : pd.Series([malicscaled]), 
'ashscaled' : pd.Series([ashscaled]), 
'ash_alcalinity_scaled' : pd.Series([ash_alcalinity_scaled]), 
'magnesiumscaled' : pd.Series([magnesiumscaled]), 
'phenolsscaled' : pd.Series([phenolsscaled]), 
'flavanoidsscaled' : pd.Series([flavanoidsscaled]), 
'nonflavanoidsscaled' : pd.Series([nonflavanoidsscaled]), 
'proanthocyaninsscaled' : pd.Series([proanthocyaninsscaled]), 
'color_intensity_scaled' : pd.Series([color_intensity_scaled]), 
'hue_scaled' : pd.Series([huescaled]), 
'od280scaled' : pd.Series([od280scaled]), 
'prolinescaled' : pd.Series([prolinescaled])} 
df = pd.DataFrame(d) 

#5. TRAIN-TEST SPLIT 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(np.matrix(df),np.matrix(winery),test_size=0.3) 
print X_train.shape, y_train.shape 
print X_test.shape, y_test.shape 

#6. K-NEAREST NEIGHBOUR ALGORITHM 
from sklearn.neighbors import KNeighborsClassifier 
knn = KNeighborsClassifier(n_neighbors=10) 
knn.fit(X_train, y_train) 
print("Test set score: {:.2f}".format(knn.score(X_test, y_test))) 

在第5節,當我運行sklearn.model_selection導入列車測試拆分機制,但由於它提供了形狀:(0,13) (0,178) (1,13) (1,178),因此它看起來沒有正確運行。

然後,在試圖運行knn時,我收到錯誤消息:Found array with 0 sample(s) (shape=(0,13)) while a minimum of 1 is required.這不是由於使用最大 - 最小歸一化進行縮放,因爲即使變量未縮放,我仍然收到此錯誤消息。

回答

2

我不完全確定你的代碼出錯的地方,與sklearn文檔相比,它有點不同。但是,我可以向您展示一種讓火車測試拆分爲適合您的葡萄酒數據集的不同方式。

from sklearn.datasets import load_wine 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.model_selection import train_test_split 
from sklearn.neighbors import KNeighborsClassifier 

X, y = load_wine(return_X_y=True) 
X_scaled = MinMaxScaler().fit_transform(X) 
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, 
                test_size=0.3) 
knn = KNeighborsClassifier(n_neighbors=10) 
knn.fit(X_train, y_train) 
+0

也許'test_train_split()'想要一個'numpy.ndarray'不是'numpy.matrixlib.defmatrix.matrix' – cardamom

+1

非常感謝。當我嘗試導入wine數據集時,出現錯誤「無法導入名稱load_wine」。我試圖用load_iris來做到這一點,它沒有任何問題,甚至運行knn.fit。我在想這個特定數據集有錯誤,或者當我嘗試手動導入時,它是不同的文件類型。 – empoleon

+0

@cardamom:當我最初生成數據框時,它的格式爲pandas.core.frame.DataFrame。不知道這個問題是否源於此。 – empoleon

相關問題