在PyTorch中給出以下代碼Keras等效函數是什麼?Pytorch到Keras代碼等效
class Network(nn.Module):
def __init__(self, state_size, action_size):
super(Network, self).__init__()
# Inputs = 5, Outputs = 3, Hidden = 30
self.fc1 = nn.Linear(5, 30)
self.fc2 = nn.Linear(30, 3)
def forward(self, state):
x = F.relu(self.fc1(state))
outputs = self.fc2(x)
return outputs
這是嗎?
model = Sequential()
model.add(Dense(units=30, input_dim=5, activation='relu'))
model.add(Dense(units=30, activation='relu'))
model.add(Dense(units=3, activation='linear'))
還是這樣?
model = Sequential()
model.add(Dense(units=30, input_dim=5, activation='linear'))
model.add(Dense(units=30, activation='relu'))
model.add(Dense(units=3, activation='linear'))
還是它?
model = Sequential()
model.add(Dense(units=30, input_dim=5, activation='relu'))
model.add(Dense(units=30, activation='linear'))
model.add(Dense(units=3, activation='linear'))
感謝
所以根據你的答案網絡有多少層? –
2個緻密層,其中一個具有激活'relu',另一個具有'線性'。 –
也有一個「隱藏的輸入圖層」,在這種情況下不會出現。如果你算這個,他們是3層。 –