我使用以下鏈接來創建「歐幾里得相似矩陣」(即我轉換爲DataFrame)。 https://stats.stackexchange.com/questions/53068/euclidean-distance-score-and-similarity http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.distance.euclidean.html構造相似度矩陣的最有效方法
我做它的方式是其工作的一個迭代的方法,但它需要在數據集是大一會兒。 pandas pd.DataFrame.corr()對於皮爾森相關性非常快速且有用。
如何在不進行窮舉迭代的情況下執行歐式相似度量?
我天真下面的代碼:
#Euclidean Similarity
#Create DataFrame
DF_var = pd.DataFrame.from_dict({"s1":[1.2,3.4,10.2],"s2":[1.4,3.1,10.7],"s3":[2.1,3.7,11.3],"s4":[1.5,3.2,10.9]}).T
DF_var.columns = ["g1","g2","g3"]
# g1 g2 g3
# s1 1.2 3.4 10.2
# s2 1.4 3.1 10.7
# s3 2.1 3.7 11.3
# s4 1.5 3.2 10.9
#Create empty matrix to fill
M_euclid = np.zeros((DF_var.shape[1],DF_var.shape[1]))
#Iterate through DataFrame columns to measure euclidean distance
for i in range(DF_var.shape[1]):
u = DF_var[DF_var.columns[i]]
for j in range(DF_var.shape[1]):
v = DF_var[DF_var.columns[j]]
#Euclidean distance -> Euclidean similarity
M_euclid[i,j] = (1/(1+sp.spatial.distance.euclidean(u,v)))
DF_euclid = pd.DataFrame(M_euclid,columns=DF_var.columns,index=DF_var.columns)
# g1 g2 g3
# g1 1.000000 0.215963 0.051408
# g2 0.215963 1.000000 0.063021
# g3 0.051408 0.063021 1.000000
Hey @root,感謝您澄清使用pdist和squareform!爲什麼相似函數之後的對角矩陣爲0.0? –
注意!對角線可以通過凱文在@ B.M的回答中的評論來解決。 –