@ drevicko的回答繪製點以下兩個序列時,失敗對我來說:
l1 = [0.03, -0.6, 1, 0.05]
l2 = [0.8, 0.9, 1, 1.1]
fig, ax1 = plt.subplots()
ax1.plot(l1)
ax2 = ax1.twinx()
ax2.plot(l2, color='r')
align_yaxis(ax1, 0, ax2, 0)
...所以這裏是我的版本:
def align_yaxis(ax1, ax2):
"""Align zeros of the two axes, zooming them out by same ratio"""
axes = (ax1, ax2)
extrema = [ax.get_ylim() for ax in axes]
tops = [extr[1]/(extr[1] - extr[0]) for extr in extrema]
# Ensure that plots (intervals) are ordered bottom to top:
if tops[0] > tops[1]:
axes, extrema, tops = [list(reversed(l)) for l in (axes, extrema, tops)]
# How much would the plot overflow if we kept current zoom levels?
tot_span = tops[1] + 1 - tops[0]
b_new_t = extrema[0][0] + tot_span * (extrema[0][1] - extrema[0][0])
t_new_b = extrema[1][1] - tot_span * (extrema[1][1] - extrema[1][0])
axes[0].set_ylim(extrema[0][0], b_new_t)
axes[1].set_ylim(t_new_b, extrema[1][1])
原則上有無限的不同對齊零點(或其他提供的解決方案所接受的其他值)的可能性:無論您將零置於y軸上的哪個位置,都可以縮放兩個系列中的每一個,以使其適合。我們只是選擇這樣的位置,在改造之後,這兩個覆蓋了相同高度的垂直間隔。 或者在其他條件下,我們最小化它們與不對齊圖相比的相同因子。 (這並不不意味着0是在情節的一半:這會發生,例如,如果一個地塊都是負的,其他一切積極。)
numpy的版本:
def align_yaxis_np(ax1, ax2):
"""Align zeros of the two axes, zooming them out by same ratio"""
axes = np.array([ax1, ax2])
extrema = np.array([ax.get_ylim() for ax in axes])
tops = extrema[:,1]/(extrema[:,1] - extrema[:,0])
# Ensure that plots (intervals) are ordered bottom to top:
if tops[0] > tops[1]:
axes, extrema, tops = [a[::-1] for a in (axes, extrema, tops)]
# How much would the plot overflow if we kept current zoom levels?
tot_span = tops[1] + 1 - tops[0]
extrema[0,1] = extrema[0,0] + tot_span * (extrema[0,1] - extrema[0,0])
extrema[1,0] = extrema[1,1] + tot_span * (extrema[1,0] - extrema[1,1])
[axes[i].set_ylim(*extrema[i]) for i in range(2)]